

Lecture Notes in Computer Science 1645
Edited by G. Goos, J. Hartmanis and J. van Leeuwen

3
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Singapore
Tokyo

Maxime Crochemore Mike Paterson (Eds.)

Combinatorial
Pattern Matching

10th Annual Symposium, CPM 99
Warwick University, UK, July 22-24, 1999
Proceedings

1 3

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editors

Maxime Crochemore
Institute Gaspard-Monge, University of Marne-la-Vallée
F-77454 Marne-la-Vallée Cedex 2, France
E-mail: Maxime.Crochemore@univ-mlv.fr

Mike Paterson
Department of Computer Science, University of Warwick
Coventry, CV4 7AL, England
E-mail: Mike.Paterson@dcs.warwick.ac.uk

Cataloging-in-Publication data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Combinatorial pattern matching : 10th annual symposium ;
proceedings / CPM 99, Warwick, UK, July 22 - 24, 1999. Maxime
Crochemore ; Mike Paterson (ed.). - Berlin ; Heidelberg ; New York ;
Barcelona ; Hong Kong ; London ; Milan ; Paris ; Singapore ; Tokyo
: Springer, 1999

(Lecture notes in computer science ; Vol. 1645)
ISBN 3-540-66278-2

CR Subject Classification (1998): F.2.2, I.5.4, I.5.0, I.7.3, H.3.3, E.4, G.2.1

ISSN 0302-9743
ISBN 3-540-66278-2 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

c© Springer-Verlag Berlin Heidelberg 1999
Printed in Germany

Typesetting: Camera-ready by author
SPIN 10703545 06/3142 – 5 4 3 2 1 0 Printed on acid-free paper

Foreword

The papers contained in this volume were presented at the Tenth Annual Sym-
posium on Combinatorial Pattern Matching, held July 22 – 24, 1999 at the
University of Warwick, England. They were selected from 26 abstracts submit-
ted in response to the call for papers. In addition, invited lectures were given by
Joan Feigenbaum from AT&T Labs Research (Massive graphs: algorithms, appli-
cations, and open problems) and David Jones from the Department of Biology,
University of Warwick (Optimizing biological sequences and protein structures
using simulated annealing and genetic algorithms).

The symposium was preceded by a two-day summer school set up to attract
and train young researchers. The lecturers of the school were Alberto Apos-
tolico (Computational Theories of Surprise), Joan Feigenbaum (Algorithmics of
network-generated massive data sets), Leszek Gasieniec and Paul Goldberg (The
complexity of gene placement), David Jones (An introduction to computational
molecular biology), Arthur Lesk (Structural alignment and maximal substructure
extraction), Cenk Sahinalp (Quest for measuring distance between strings: exact,
approximate, and probabilistic algorithms), and Jim Storer.

Combinatorial Pattern Matching (CPM) addresses issues of searching and
matching strings and more complicated patterns such as trees, regular expres-
sions, graphs, point sets, and arrays. The goal is to derive non-trivial combina-
torial properties of such structures and to exploit these properties in order to
achieve superior performance for the corresponding computational problems.

Over recent years, a steady flow of high-quality research on this subject has
changed a sparse set of isolated results into a fully-fledged area of algorithmics.
This area is continuing to grow even further due to the increasing demand for
speed and efficiency that comes from important and rapidly expanding appli-
cations such as the World Wide Web, computational biology, and multimedia
systems, involving requirements for information retrieval, data compression, and
pattern recognition. The objective of the annual CPM gatherings is to provide an
international forum for research in combinatorial pattern matching and related
applications.

The general organisation and orientation of CPM conferences is coordinated
by a steering committee composed of A. Apostolico, M. Crochemore, Z. Galil,
and U. Manber.

The first nine meetings were held in Paris (1990), London (1991), Tucson
(1992), Padova (1993), Asilomar (1994), Helsinki (1995), Laguna Beach (1996),
Aahrus (1997), and Piscataway (1998). After the first meeting, a selection of
papers appeared as a special issue of Theoretical Computer Science in volume
92. The proceedings of the third to ninth meetings appeared as volumes 644,
684, 807, 937, 1075, 1264, and 1448 of the present LNCS series at Springer.

CPM’99 was organised by Cenk Sahinalp of the Department of Computer Sci-
ence at Warwick University. The conference was supported in part by MATHFIT
(a joint programme of EPSRC and the London Mathematical Society).

May 1999 M. Crochemore, M. Paterson

Programme Committee

Maxime Crochemore, co-chair Mike Paterson, co-chair
Leszek Gasieniec Cenk Sahinalp
Roberto Grossi Dan Spielman
Tao Jiang Jim Storer
Heikki Mannila Kiem-Phong Vo
Rajeev Motwani Moti Yung
Gene Myers Jacob Ziv
Chris Overton

Additional Referees

The following external referees who helped with the selection of papers for
CPM’99 are gratefully acknowledged:

James Abello, Cyril Allauzen, Amihood Amir, Sabria Benhamida, Adam
Buchsbaum, R. DePrisco, Ramesh Hariharan, Piotr Indyk, Gad Landau, A.
Moffat, S. Muthukrishnan, Kunsoo Park, R. Ravi, Giuseppina Rindone, Mikkel
Thorup, Zdenek Tronicek, Suresh Venkatasubramanian, Marc Zipstein

Organising Committee

S. Cenk Sahinalp, chair Jonathan Sharp
Leslie Goldberg Nasir Rajpoot
Paul Goldberg Mary Cryan
Graham Cormode Hesham Al-Ammal

Table of Contents

Shift-And Approach to Pattern Matching in LZW Compressed Text 1
Takuya Kida, Masayuki Takeda, Ayumi Shinohara, and Setsuo Arikawa

A General Practical Approach to Pattern Matching over Ziv-Lempel
Compressed Text . 14
Gonzalo Navarro and Mathieu Raffinot

Pattern Matching in Text Compressed by Using Antidictionaries 37
Yusuke Shibata, Masayuki Takeda, Ayumi Shinohara, and Setsuo Arikawa

On the Structure of Syntenic Distance . 50
David Liben-Nowell

Physical Mapping with Repeated Probes: The Hypergraph Superstring
Problem . 66
Serafim Batzoglou and Sorin Istrail

Hybridization and Genome Rearrangement . 78
Nadia El-Mabrouk and David Sankoff

On the Complexity of Positional Sequencing by Hybridization 88
Amir Ben-Dor, Itsik Pe’er, Ron Shamir, and Roded Sharan

GESTALT: Genomic Steiner Alignments . 101
Giuseppe Lancia and R. Ravi

Bounds on the Number of String Subsequences . 115
Daniel S. Hirschberg

Approximate Periods of Strings . 123
Jeong Seop Sim, Costas S. Iliopoulos, KunsooPark, and William F. Smyth

Finding Maximal Pairs with Bounded Gap . 134
Gerth Stølting Brodal, Rune B. Lyngsø, Christian N.S. Pedersen, and
Jens Stoye

A Dynamic Data Structure for Reverse Lexicographically Sorted
Prefixes . 150
Hidetoshi Yokoo

A New Indexing Method for Approximate String Matching 163
Gonzalo Navarro and Ricardo Baeza-Yates

The Compression of Subsegments of Images Described by Finite
Automata . 186
Juhani Karhumäki, Wojciech Plandowski, and Wojciech Rytter

VIII Table of Contents

Ziv Lempel Compression of Huge Natural Language Data Tries Using
Suffix Arrays . 196
Strahil Ristov and Eric Laporte

Matching of Spots in 2D Electrophoresis Images. Point Matching
Under Non-uniform Distortions . 212
Tatsuya Akutsu, Kyotetsu Kanaya, Akira Ohyama, and Asao Fujiyama

Applying an Edit Distance to the Matching of Tree Ring Sequences
in Dendrochronology . 223
Carola Wenk

Fast Multi-dimensional Approximate Pattern Matching 243
Gonzalo Navarro and Ricardo Baeza-Yates

Finding Common RNA Secondary Structures from RNA Sequences 258
Zhuozhi Wang and Kaizhong Zhang

Finding Common Subsequences with Arcs and Pseudoknots 270
Patricia A. Evans

Computing Similarity between RNA Structures . 281
Kaizhong Zhang, Lusheng Wang, and Bin Ma

Author Index . 295

Shift-And Approach to Pattern Matching

in LZW Compressed Text

Takuya Kida, Masayuki Takeda, Ayumi Shinohara, and Setsuo Arikawa

Department of Informatics, Kyushu University 33
Fukuoka 812-8581, Japan

{kida, takeda, ayumi, arikawa}@i.kyushu-u.ac.jp

Abstract. This paper considers the Shift-And approach to the problem
of pattern matching in LZW compressed text, and gives a new algorithm
that solves it. The algorithm is indeed fast when a pattern length is
at most 32, or the word length. After an O(m + |Σ|) time and O(|Σ|)
space preprocessing of a pattern, it scans an LZW compressed text in
O(n + r) time and reports all occurrences of the pattern, where n is the
compressed text length, m is the pattern length, and r is the number of
the pattern occurrences. Experimental results show that it runs approxi-
mately 1.5 times faster than a decompression followed by a simple search
using the Shift-And algorithm. Moreover, the algorithm can be extended
to the generalized pattern matching, to the pattern matching with k
mismatches, and to the multiple pattern matching, like the Shift-And
algorithm.

1 Introduction

Pattern matching in compressed text is one of the most interesting topics in the
combinatorial pattern matching. Several researchers tackled this problem. Eilam-
Tzoreff and Vishkin [8] addressed the run-length compression, and Amir, Lan-
dau, and Vishikin [6], and Amir and Benson [2, 3] and Amir, Benson, and Farach
[4] addressed its two-dimensional version. Farach and Thorup [9] and Ga̧sieniec,
et al. [11] addressed the LZ77 compression [18]. Amir, Benson, and Farach [5]
addressed the LZW compression [16]. Karpinski, et al. [12] and Miyazaki, et al.
[15] addressed the straight-line programs. However, it seems that most of these
studies were undertaken mainly from the theoretical viewpoint. Concerning the
practical aspect, Manber [14] pointed out at CPM’94 as follows.

It is not clear, for example, whether in practice the compressed search
in [5] will indeed be faster than a regular decompression followed by a
fast search.

In 1998 we gave in [13] an affirmative answer to the above question: We
presented an algorithm for finding multiple patterns in LZW compressed text,
which is a variant of the Amir-Benson-Farach algorithm [5], and showed that in
practice the algorithm is faster than a decompression followed by a simple search.

M. Crochemore, M. Paterson (Eds.): CPM’99, LNCS 1645, pp. 1–13, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

2 Takuya Kida et al.

Namely, it was proved that pattern matching in compressed text is not only of
theoretical interest but also of practical interest. We believe that fast pattern
matching in compressed text is of great importance since there is a remarkable
explosion of machine readable text files, which are often stored in compressed
forms.

On the other hand, the Shift-And approach [1, 7, 17] to the classical pattern
matching is widely known to be efficient in many practical applications. This
method is simple, but very fast when a pattern length is not greater than the
word length of typical computers, say 32. In this paper, we apply this method
to the problem of pattern matching in LZW compressed text and then give a
new algorithm that solves it. Let m, n, r be the pattern length, the length of
compressed text, and the number of occurrences of the pattern in the original
text, respectively. The algorithm, after an O(m + |Σ|) time and O(|Σ|) space
preprocessing of a pattern, scans a compressed text in O(n + r) time using
O(n+m) space and reports all occurrences of the pattern in the original text. The
O(r) time is devoted only to reporting the pattern occurrences. Experimental
results on the Brown corpus show that the proposed algorithm is approximately
1.5 times faster than a decompression followed by a search using the Shift-And
method. Moreover, the algorithm can be extended to (1) the generalized pattern
matching, to (2) the pattern matching with k mismatches, and to (3) the multiple
pattern matching.

We assume, throughout this paper, that m ≤ 32 and that the arithmetic op-
erations, the bitwise logical operations, and the logarithm operation on integers
can be performed in constant time.

The organization of this paper is as follows: We briefly sketch the LZW
compression method, and the Shift-And pattern matching algorithm. We present
our algorithm and discuss the complexity in Section 3. In Section 4, we show the
experimental results in comparison with both an LZW decompression followed
by a search using the Shift-And method and the previous algorithm presented
in [13]. In Section 5 we shall discuss the extensions of the algorithm to the
generalized pattern matching, to the pattern matching with k mismatches, and
to the multiple pattern matching.

2 Preliminaries

We first define some notation. Let Σ, usually called an alphabet, be a finite set
of characters, and Σ∗ be a set of strings over Σ. We denote the length of u ∈ Σ∗

by |u|. We call especially the string whose length is 0 null string, and denote it
by ε. We denote by u[i] the ith character of a string u, and by u[i : j] the string
u[i]u[i + 1]...u[j], 1 ≤ i ≤ j ≤ |u|. For a set A of integers and an integer k, let
A⊕ k = {i + k | i ∈ A} and k 	A = {k − i | i ∈ A}.

In the following subsections we briefly sketch the LZW compression method
and the Shift-And pattern matching algorithm.

Shift-And Approach to Pattern Matching in LZW Compressed Text 3

1, a0

2, b

3, c

4, b

5, a

6, a

8, b
7, b

9, c
10,a

11,b

12,a

1,2, 2,4, 4, 5, 6,3, 9, 11Compressed text

Original text a b a b a b b a b c a b a b c a b a b

Fig. 1. Dictionary trie.

2.1 LZW Compression

The LZW compression is a very popular compression method. It is adopted as
the compress command of UNIX, for instance. It parses a text into phrases and
replaces them with pointers to the dictionary. The dictionary initially consists
of the characters in Σ. The compression procedure repeatedly finds the longest
match in the current position and updates the dictionary by adding the concate-
nation of the match and the next character. The dictionary is implemented as
a trie structure, in which each node represents a phrase in it. The matches are
encoded as integers associated with the corresponding nodes of the dictionary
trie. The update of the dictionary is executed in O(1) time by creating a new
node labeled by the next character as a child of the node corresponding to the
current match.

Figure 1 shows the dictionary trie for the text abababbabcababcabab, assuming
the alphabet Σ = {a, b, c}. Hereafter, we identify the string u with the integer
representing it, if no confusion occurs.

The dictionary trie is removed after the compression is completed. It can be
reconstructed from the compressed text. In the decompression, the original text
is obtained with the aid of the recovered dictionary trie. This decompression
takes linear time proportional to the length of the original text. However, if the
original text is not required, the dictionary trie can be built only in O(n) time,
where n is the length of the compressed text. The algorithm for constructing the
dictionary trie from a compressed text is summarized in Figure 2.

2.2 The Shift-And Pattern Matching Algorithm

The Shift-And pattern matching algorithm was proposed by Abrahamson [1],
Baeza-Yates and Gonnet [7], and Wu and Manber [17]. In the following, we
present the algorithm according to the notation in [1].

Let P = P [1 : m] be a pattern of length m, and T = T [1 : N] be a text of
length N . For k = 0, 1, . . . , N , let

Rk =
{
1 ≤ i ≤ m

∣∣ i ≤ k and P [1 : i] = T [k − i + 1 : k]
}
, (1)

4 Takuya Kida et al.

Input. An LZW compressed text u1u2 . . . un.
Output. Dictionary D represented in the form of trie.
Method.
begin

D := Σ;
for i := 1 to n− 1 do begin

if ui+1 ≤ |D| then
let a be the first character of ui+1

else
let a be the first character of ui;

D := D ∪ {ui · a}
end

end.

Fig. 2. Reconstruction of dictionary trie.

and for any a ∈ Σ, let

M(a) =
{
1 ≤ i ≤ m

∣∣ P [i] = a
}
. (2)

Definition 1. Define the function f : 2{1,2,... ,m} ×Σ → 2{1,2,... ,m} by

f(S, a) =
(
(S ⊕ 1) ∪ {1}

)
∩M(a),

where S ⊆ {1, · · · , m} and a ∈ Σ.

Using this function we can compute the values of Rk for k = 1, 2, . . . , N by

1. R0 = ∅,
2. Rk+1 = f(Rk, T [k + 1]) (k ≥ 0).

For k = 1, 2, . . . , N , the algorithm reads the k-th character of the text, computes
the value of Rk, and then examine whether m is in Rk. If m ∈ Rk, then T [k −
m + 1 : k] = P , that is, there is a pattern occurrence at position k − m + 1 of
the text. Note that we can regard Rk as states of the KMP automaton, and f
acts as the state transition function.

When m ≤ 32, we can represent the sets Rk and M(a) as m-bit integers.
Then, we can calculate the integers Rk by

1. R0 = 0,
2. Rk+1 = ((Rk � 1) + 1) & M(T [k + 1]) (k ≥ 0),

where ’�’ and ’&’ denote the bit-shift operation and the bitwise logical product,
respectively. We can get a pattern occurrence if Rk&2m−1 6= 0. For example, the
values of Rk for k = 0, 1, . . . are shown in Figure 3, where T = abababbabcababc
and P = ababc.

Shift-And Approach to Pattern Matching in LZW Compressed Text 5

The time complexity of this algorithm is O(mN). However, the bitwise logical
product, the bit-shift, and the arithmetic operations on 32 bit integers can be
performed at high speed, and thus be considered to be done in O(1) time. Then
we can regard the time complexity as O(N) if m is at most 32 (in fact such a
case occurs very often).

original text: a b a b a b b a b c a b a b c
a 0 1 0 1 0 1 0 0 1 0 0 1 0 1 0 0
b 0 0 1 0 1 0 1 0 0 1 0 0 1 0 1 0

Rk: a 0→ 0→ 0→ 1→ 0→ 1→ 0→ 0→ 0→ 0→ 0→ 0→ 0→ 1→ 0→ 0
b 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0
c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

4

Fig. 3. Behavior of the Shift-And algorithm.
The symbol 4 indicates that a pattern occurrence is found at that
position.

3 Proposed Algorithm

We want to design a new pattern matching algorithm that runs on an LZW com-
pressed text and simulates the behavior of the Shift-And algorithm on the origi-
nal text. Assume that the text is parsed as u1u2 . . . un. Let ki = |u1u2 . . . ui| for
i = 0, 1, . . . , n. Our idea is to compute only the values of Rki for i = 1, 2, . . . , n,
to achieve a linear time complexity which is proportional not to the original text
length N but to the compressed text length n.

Definition 2. Let f̂ be the function f extended to 2{1,... ,m} ×Σ∗ by

f̂(S, ε) = S and f̂(S, ua) = f(f̂(S, u), a),

where S ⊆ {1, · · · , m}, u ∈ Σ∗ and a ∈ Σ.

Lemma 1. Suppose that the text is T = xuy with x, u, y ∈ Σ∗ and u 6= ε. Then,

R|xu| = f̂(R|x|, u).

Proof. It follows directly from the definition of f̂ .

Let D be the set of phrases in the dictionary. If we have the values of f̂ for
the domain 2{1,... ,m} ×D, we can compute the value Rki+1 = f̂(Rki , ui+1) from
Rki and ui+1 for each i = 0, 1, . . . , n − 1. As shown later, we can perform the
computation only in O(1) time by executing the bit-shift and the bitwise logical
operations, using the function M̂ defined as follows.

6 Takuya Kida et al.

Definition 3. For any u ∈ Σ∗, let M̂(u) = f̂({1, . . . , m}, u).

Lemma 2. For any S ⊆ {1, . . . , m} and any u ∈ Σ∗,

f̂(S, u) =
(
(S ⊕ |u|) ∪ {1, 2, . . . , |u|}

)
∩ M̂(u).

Proof. By induction on |u|. It is easy for u = ε. Suppose u = u′a with u′ ∈ Σ∗

and a ∈ Σ. We have, from the induction hypothesis,

f̂(S, u′) =
(
(S ⊕ |u′|) ∪ {1, 2, . . . , |u′|}

)
∩ M̂(u′).

It follows from the definition of f that, for any S1, S2 ⊆ {1, 2, . . . , m} and for any
a ∈ Σ, f(S1∩S2, a) = f(S1, a)∩f(S2, a) and f(S1∪S2, a) = f(S1, a)∪f(S2, a).
Then,

f̂(S, u) =
(
f(S ⊕ |u′|, a) ∪ f({1, 2, . . . , |u′|}, a)

)
∩ f(M̂(u′), a)

=
(
(S ⊕ |u|) ∪ {1, 2, . . . , |u|}

)
∩ M̂(u).

Lemma 3. The function which takes as input u ∈ D and returns in O(1) time
the m-bit representation of the set M̂(u), can be realized in O(|D| + m) time
using O(|D|) space.

Proof. Since M̂(u) ⊆ {1, . . . , m}, we can store M̂(u) as an m-bit integer in the
node u of the dictionary trie D. Suppose u = u′a with u′ ∈ D and a ∈ Σ. M̂(u)
can be computed in O(1) time from M̂(u′) and M(a) when the node u is added
to the dictionary trie since M̂(u) = f(M̂(u′), a) =

(
(M̂(u′)⊕ 1

)
∪ {1}) ∩M(a).

Since the table M(a) is computed in O(|Σ| + m) time using O(|Σ|) space and
Σ ⊆ D, the total time and space complexities are O(|D| + m) and O(|D|),
respectively.

Now we have the following theorem from Lemmas 1, 2, and 3.

Theorem 1. The function which takes as input (S, u) ∈ 2{1,... ,m} × D and
returns in O(1) time the m-bit representation of the set f̂(S, u), can be realized
in O(|D|+ m) time using O(|D|) space.

Since |D| = O(n), we can perform in O(n + m) time the computation of
Rki for i = 1, . . . , n by executing the bit-shift and the bitwise logical opera-
tions. However, we have to examine whether m ∈ Rj for every j = 1, 2, . . . , N .
For a complete simulation of the move of the Shift-And algorithm, we need a
mechanism for enumerating the set Output(Rki , ui+1) defined as follows.

Definition 4. For S ⊆ {1, . . . , m} and u ∈ D, let

Output(S, u) =
{
1 ≤ i ≤ |u|

∣∣ m ∈ f̂(S, u[1 : i])
}
.

Shift-And Approach to Pattern Matching in LZW Compressed Text 7

To realize the procedure enumerating the set Output, we define the following
sets.

Definition 5. For any u ∈ D, let

U(u) =
{
1 ≤ i ≤ |u|

∣∣ i < m and m ∈ M̂(u[1 : i])
}
, and

V (u) =
{
1 ≤ i ≤ |u|

∣∣ i ≥ m and m ∈ M̂(u[1 : i])
}
.

Then, we have the following lemma.

Lemma 4. For any S ⊆ {1, . . . , m} and any u ∈ Σ∗,

Output(S, u) =
(
(m	 S) ∩ U(u)

)
∪ V (u).

Proof. By Lemma 2 and Definitions 4 and 5, we obtain:

Output(S, u) = {1 ≤ i ≤ |u| | i < m and m ∈ (S ⊕ i) ∩ M̂(u[1 : i])}
∪{1 ≤ i ≤ |u| | m ≤ i and m ∈ M̂(u[1 : i])}

=
(
(m	 S) ∩ U(u)

)
∪ V (u).

Since U(u) ⊆ {1, . . . , m}, we can store the set U(u) as an m-bit integer in the
node u of the dictionary trie D.

Lemma 5. The function which takes as input u ∈ D and returns in O(1) time
the m-bit representation of U(u), can be realized in O(|D|+m) time using O(|D|)
space.

Proof. By the definition of U , for any u = u′a with u′ ∈ Σ∗ and a ∈ Σ,

U(u) = U(u′) ∪
{
|u|

∣∣ |u| < m and m ∈ M̂(u)
}
.

Then, we can prove the lemma in a similar way to the proof of Lemma 3.

To eliminate the cost of performing the operation 	 in (m 	 S) ∩ U(u), we
store the set U ′(u) = m	U(u) instead of U(u). Then, we can obtain the integer
representing the set S ∩ U ′(u) by one execution of the bitwise logical product
operation. For an enumeration of the set, we repeatedly use the logarithm op-
eration to find the leftmost bit of the integer that is one. Assuming that the
logarithm operation can be performed in constant time, this enumeration takes
only linear time proportional to the set size.

Next, we consider V (u). Since the set V (u) cannot be represented as an m-bit
integer, we shall represent it as a linked list as shown in the proof of the next
lemma.

Lemma 6. The procedure which takes as input u ∈ D and enumerates the set
V (u), can be realized in O(|D| + m) time using O(|D|) space, so that it runs in
linear time with respect to |V (u)|.

8 Takuya Kida et al.

Proof. By the definition of V , for any u = u′a with u′ ∈ Σ∗ and a ∈ Σ,

V (u) = V (u′) ∪
{
|u|

∣∣ m ≤ |u| and m ∈ M̂(u)
}
.

We use the function Prev(u) that returns the node of the dictionary trie D that
represents the longest proper prefix v of u such that |v| ∈ V (u). Then, we have

V (u) = V (Prev(u)) ∪
{
|u|

∣∣ m ≤ |u| and m ∈ M̂(u)
}
.

The function Prev(u) can be realized to answer in O(1) time, using O(|D|) time
and space. Therefore it is sufficient to store in every node u of the dictionary
trie D the value Prev(u) and the boolean value in V (u) indicating whether
|u| ∈ V (u). The proof is now complete.

From Lemmas 4, 5, and 6, we have the following theorem.

Theorem 2. The procedure which takes as input (S, u) ∈ 2{1,... ,m} × D and
enumerates the set Output(S, u), can be realized in O(|D|+m) time using O(|D|)
space, so that it runs in linear time with respect to |Output(S, u)|.

Now we can simulate the behavior of the Shift-And algorithm on an un-
compressed text completely. The algorithm is summarized as in Figure 4. The
behavior of the new algorithm is illustrated in Figure 5.

Theorem 3. The algorithm of Figure 4 runs in O(|Σ|+ m + n + r) time using
O(|Σ|+ m + n) space, where r is the number of pattern occurrences.

4 Experimental Results

In order to estimate the performance of the proposed algorithm, we carried out
some experiments on the following four methods.

Method 1. A decompression followed by the Shift-And algorithm.
Method 2. Our previous algorithm presented in [13].
Method 3. The new algorithm proposed in this paper.
Method 4. Searching the uncompressed text, using the Shift-And algorithm.

In our experiments we used the Brown corpus as the text to be searched. The
uncompressed size is about 6.8Mb and the compressed size is about 3.4Mb. The
experiments were performed in the following two different situations.

Situation 1. Workstation (SPARCstation 20) with remote disk storage. The
file transfer ratio is 0.96 Mbyte/sec.

Situation 2. Workstation (SPARCstation 20) with local disk storage. The file
transfer ratio is 3.27 Mbyte/sec.

Shift-And Approach to Pattern Matching in LZW Compressed Text 9

Input. An LZW compressed text u1u2...un and a pattern P .
Output. All positions at which P occurs.
begin

/* We represent the set V (u) by the functions Prev(u) and in V (u).
See the proof of Lemma 6. */

/* Preprocessing */
Construct the table M from P ;
D := ∅; U ′(ε) := ∅; in V (ε) := false; Prev(ε) := ε;
for each a ∈ Σ do call Update(ε, a);

/* Text scanning */
k := 0; R := ∅;
for ` := 1 to n do begin

call Update(u`−1, u`); /* We assume u0 = ε./
for each p ∈ �R ∩ U ′(u`)

� ∪ V (u`) do
report a pattern occurrence at position k + p−m + 1;

R :=
�
(R⊕ |u`|) ∪ {1, 2, . . . , |u`|}

� ∩ cM(u`);
k := k + |u`|

end
end.

procedure Update(u, v)
begin

if v ≤ |D| then
let a be the first character of v

else
let a be the first character of u;

D := D ∪ {u · a};
cM(u · a) := ((cM(u)⊕ 1) ∪ {1}) ∩M(a);
if |u · a| < m then

if m ∈ cM(u · a) then
U ′(u · a) := U ′(u) ∪ {m− |u · a|}

else
U ′(u · a) := U ′(u)

else begin
U ′(u · a) := ∅;
if m ∈ cM(u · a) then

in V (u · a) := true
else

in V (u · a) := false;
if in V (u) = true then

Prev(u · a) := u
else

Prev(u · a) := Prev(u)
end

end;

Fig. 4. Pattern matching algorithm in LZW compressed text

10 Takuya Kida et al.

original text: a b ab ab ba b c aba bc
compressed text: 1 2 4 4 5 2 3 6 9

a 0 1 0 0 0 1 0 0 1 0
b 0 0 1 1 1 0 1 0 0 0

Rk: a 0 −→ 0 −→ 0 −→ 0 −→ 0 −→ 0 −→ 0 −→ 0 −→ 1 −→ 0
b 0 0 0 1 1 0 0 0 0 0
c 0 0 0 0 0 0 0 0 0 1

...
...

...
...

...
...

...
...

...
Output(Rk, u`): ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ {2}

Fig. 5. Behavior of the algorithm.

Table 1. CPU time and elapsed time.

elapsed time (sec)
method CPU time (sec) Situation 1 Situation 2

Method 1 7.52 8.16 7.62

Method 2 6.57 7.31 6.83

Method 3 5.15 6.05 5.41

Method 4 3.09 9.36 3.25

The searching times, measured in both the CPU time and the elapsed time,
are shown in Table 1, where we included the preprocessing time.

Although the time complexities of our algorithms are linear with respect to
the compressed text size n not to the original size N , the LZW compression
of typical English texts normally gives n = N/2 and thus the constant factor
is crucial. It is observed from Table 1 that, in the CPU time comparison, our
algorithms (Methods 2 and 3) are slower than the uncompressed case (Method 4)
whereas they are faster than a decompression followed by a search (Method 1).
It is also observed that the new algorithm (Method 3) is about 1.3 times faster
than the previous one (Method 2).

In general, the searching time is the sum of (1) the file I/O time and (2)
the CPU time consumed for compressed pattern matching. Text compression
reduces the file I/O time at the same ratio as the compression ratio while it may
increase the CPU time. When the data transfer is slow, we have to give a weight
to the reduction of the file I/O time, and a good compression ratio leads to a fast
search. In fact, even a decompression followed by a simple search (Method 1)
was faster than the uncompressed search (Method 4) in Situation 1. It should
be noted that, in this situation, the previous algorithm (Method 2) and the new
algorithm (Method 3) are faster than the uncompressed case (Method 4), and
especially the latter is approximately 1.5 times faster than the uncompressed
case.

On the contrary, in the situations that the data transfer is ralatively fast, the
CPU time becomes a dominant factor. It is observed that, like in the CPU time

Shift-And Approach to Pattern Matching in LZW Compressed Text 11

comparison, Methods 2 and 3 are slower than Method 4 while they are faster
than Method 1 in the elapsed time comparison in Situation 2.

Thus we conclude that, for the LZW compression, the compressed search is
indeed faster than a decompression followed by a fast search, and that the Shift-
And approach is effective in the LZW compressed pattern matching. When the
data transfer is slow, e.g. network environments, the compressed search can be
faster than the uncompressed search.

5 Extensions

In this section, we mention how to extend our algorithm.

5.1 Generalized Pattern Matching

The generalized pattern matching problem [1] is a pattern matching problem in
which a pattern element is a set of characters. For instance, (b + c + h + l)ook
is a pattern that matches the strings book, cook, hook, and look. Formally, let
∆ = {X ⊆ Σ | X 6= ∅} and P = X1...Xm (Xi ∈ ∆). Then we want to find all
integers i such that T [i : i + m− 1] ∈ P .

It is not difficult to extend our algorithm to the problem. We have only
to modify some equations: For example, we modify Equations (1) and (2) in
Section 2.2 as follows.

Rk =
{
1 ≤ i ≤ m

∣∣ P [1 : i] 3 T [k − i + 1 : k]
}
, (1′)

M(a) =
{
1 ≤ i ≤ m

∣∣ P [i] 3 a
}
. (2′)

5.2 Pattern Matching with k Mismatches

This problem is a pattern matching problem in which we allow up to k characters
of the pattern to mismatch with the corresponding text [10]. For example, if
k = 2, the pattern pattern matches the strings postern and cittern, but does
not match eastern. The idea stated in [7] to solve this problem is to count up
the number of mismatches using dm log2 me bits instead of using one bit to see
whether P [i] = T [k]. This technique can be used to adapt our algorithm for the
problem.

5.3 Multiple Pattern Matching

Suppose we are looking for multiple patterns in a text. One solution is to keep
one bit vector R per pattern and perform the Shift-And algorithm in parallel,
but the time complexity is linearly proportional to the number of patterns. The
solutions in [7] and in [17] are to coalesce all vectors, keeping all the information
in only one vector. Such technique can be used to adapt our algorithm for the
multiple pattern matching problem in LZW compressed text.

12 Takuya Kida et al.

6 Conclusion

In this paper we addressed the problem of searching in LZW compressed text
directly, and presented a new algorithm. We implemented the algorithm, and
showed that it is approximately 1.5 times faster than a decompression followed by
a search using the Shift-And algorithm. Moreover we showed that our algorithm
has several extensions, and is therefore useful in many practical applications.
Some future directions of this study will be extensions to the pattern matching
with k differences, and to the regular expression matching, and will be to develop
a compression method which enables us to scan compressed texts faster.

References

[1] K. Abrahamson. Generalized string matching. SIAM J. Comput., 16(6):1039–
1051, December 1987.

[2] A. Amir and G. Benson. Efficient two-dimensional compressed matching. In Proc.
Data Compression Conference, page 279, 1992.

[3] A. Amir and G. Benson. Two-dimensional periodicity and its application. In
Proc. 3rd Symposium on Discrete Algorithms, page 440, 1992.

[4] A. Amir, G. Benson, and M. Farach. Optimal two-dimensional compressed match-
ing. In Proc. 21st International Colloquium on Automata, Languages and Pro-
gramming, 1994.

[5] A. Amir, G. Benson, and M. Farach. Let sleeping files lie: Pattern matching in
Z-compressed files. Journal of Computer and System Sciences, 52:299–307, 1996.

[6] A. Amir, G. M. Landau, and U. Vishkin. Efficient pattern matching with scaling.
Journal of Algorithms, 13(1):2–32, 1992.

[7] R. Baeza-Yaltes and G. H. Gonnet. A new approach to text searching. Comm.
ACM, 35(10):74–82, October 1992.

[8] T. Eilam-Tzoreff and U. Vishkin. Matching patterns in a string subject to mul-
tilinear transformations. In Proc. International Workshop on Sequences, Combi-
natorics, Compression, Security and Transmission, 1988.

[9] M. Farach and M. Thorup. String-matching in Lempel-Ziv compressed strings.
In 27th ACM STOC, pages 703–713, 1995.

[10] Z. Galil and R. Giancarlo. Data structures and algorithms for approximate string
matching. Journal of Complexity, 4:33–72, 1988.

[11] L. Ga̧sieniec, M. Karpinski, W. Plandowski, and W. Rytter. Efficient algorithms
for Lempel-Ziv encoding. In Proc. 4th Scandinavian Workshop on Algorithm The-
ory, volume 1097 of Lecture Notes in Computer Science, pages 392–403. Springer-
Verlag, 1996.

[12] M. Karpinski, W. Rytter, and A. Shinohara. An efficient pattern-matching algo-
rithm for strings with short descriptions. Nordic Journal of Computing, 4:172–186,
1997.

[13] T. Kida, M. Takeda, A. Shinohara, M. Miyazaki, and S. Arikawa. Multiple pattern
matching in LZW compressed text. In J. A. Atorer and M. Cohn, editors, Proc.
of Data Compression Conference ’98, pages 103–112. IEEE Computer Society,
March 1998.

[14] U. Manber. A text compression scheme that allows fast searching directly in
the compressed file. In Proc. 5th Annu. Symp. Combinatorial Pattern Matching,
volume 807 of Lecture Notes in Computer Science, pages 113–124. Springer-Verlag,
1994.

Shift-And Approach to Pattern Matching in LZW Compressed Text 13

[15] M. Miyazaki, A. Shinohara, and M. Takeda. An improved pattern matching al-
gorithm for strings in terms of straight-line programs. In Proc. 8th Annu. Symp.
Combinatorial Pattern Matching, volume 1264 of Lecture Notes in Computer Sci-
ence, pages 1–11. Springer-Verlag, 1997.

[16] T. A. Welch. A technique for high performance data compression. IEEE Comput.,
17:8–19, June 1984.

[17] S. Wu and U. Manber. Fast text searching allowing errors. Comm. ACM,
35(10):83–91, October 1992.

[18] J. Ziv and A. Lempel. A universal algorithm for sequential data compression.
IEEE Trans. Inform. Theory, IT-23(3):337–349, May 1977.

A General Practical Approach to Pattern

Matching over Ziv-Lempel Compressed Text

Gonzalo Navarro1 and Mathieu Raffinot2

1 Dept. of Computer Science, University of Chile.
Blanco Encalada 2120, Santiago, Chile.

gnavarro@dcc.uchile.cl.
Partially supported by Fondecyt grant 1-990627.

2 Institut Gaspard Monge, Cité Descartes,
Champs-sur-Marne, 77454 Marne-la-Vallée Cedex 2, France.

raffinot@monge.univ-mlv.fr

Abstract. We address the problem of string matching on Ziv-Lempel
compressed text. The goal is to search a pattern in a text without un-
compressing it. This is a highly relevant issue to keep compressed text
databases where efficient searching is still possible. We develop a gen-
eral technique for string matching when the text comes as a sequence of
blocks. This abstracts the essential features of Ziv-Lempel compression.
We then apply the scheme to each particular type of compression. We
present the first algorithm to find all the matches of a pattern in a text
compressed using LZ77. When we apply our scheme to LZ78, we obtain
a much more efficient search algorithm, which is faster than uncompress-
ing the text and then searching on it. Finally, we propose a new hybrid
compression scheme which is between LZ77 and LZ78, being in practice
as good to compress as LZ77 and as fast to search in as LZ78.

1 Introduction

String matching is one of the most pervasive problems in computer science, with
applications in virtually every area. It is also one of the oldest and richest area of
development. The string matching problem is: given a pattern P = p1...pm and a
text T = t1...tu, both sequences of symbols over a finite alphabet Σ of size σ, find
all the occurrences of P in T . There are many algorithms to solve this problem,
from classical to very recent [19, 8, 4, 14, 27, 9, 25]. The complexity of this
problem is O(u) in the worst case and O(u log(m)/m) on average, where u = |T |
and m = |P |, and there exist variants of [8, 9] which achieve this complexity. In
practice, however, [27, 25] are the fastest algorithms in most cases.

Another old and rich area in computer science is text compression. Its aim is
to exploit the redundancies of the text to reduce its space usage. There are many
different compression schemes [5], among which the Ziv-Lempel family [31, 32]
is one of the best in practice because of their good compression ratios combined
with efficient compression and decompression times. Other compression schemes
are Huffman coding [15] and arithmetic coding [29], among others.

M. Crochemore, M. Paterson (Eds.): CPM’99, LNCS 1645, pp. 14–36, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

A General Practical Approach to Pattern Matching 15

Today’s textual databases are an excellent example of applications where
both problems are crucial: the texts should be kept compressed to save space
and I/O time, and they should be efficiently searched. Surprisingly, these two
combined requirements are not easy to achieve together, as the only solution
before the 90’s was to process queries by uncompressing the texts and then
searching into them.

The compressed matching problem was first defined by Amir and Benson [1]
as the task of performing string matching in a compressed text without decom-
pressing it. Given a text T , a corresponding compressed string Z = z1 . . . zn, and
a pattern P , the compressed matching problem consists in finding all occurrences
of P in T , using only P and Z. A naive algorithm, which first decompresses the
string Z and then performs standard string matching, takes time O(u + m).
An optimal algorithm takes worst-case time O(n + m), where n = |Z|. In [2], a
new criterion, called extra space, for evaluating compressed matching algorithms,
was introduced. According to the extra space criterion, algorithms should use at
most O(n) extra space, optimally O(m) in addition to the n-length compressed
file.

We define now a variation where we are required to report all the matching
positions. That is, given P and Z, report all the |x| such that T = xPy. The
optimal algorithm for this problem takes O(m + n + R) time, where R is the
number of matches.

Two different approaches have emerged in the last years to combine com-
pression and searching in textual databases. A first one is strongly oriented to
natural language texts, which are assumed to be composed of words which fol-
low some statistical rules. The basic idea is to compress the text using Huffman,
where the words instead of the characters are taken as the symbols [7, 22]. As
Huffman assigns a fixed code to each symbol, searching a given string is a matter
of compressing it and searching it in the compressed text using a classical string
matching algorithm with minor modifications [24, 23]. Despite its simplicity, this
approach is very effective on natural language text, with better compression ra-
tios than those of the Ziv-Lempel family, and search time which is between 2
and 8 times faster than the fastest algorithms for standard string matching over
the uncompressed text. They are also able to search for complex patterns (such
as regular expressions) and allow errors in the matches, provided that words are
matched against words. The average search time for a simple pattern is close to
O(m + n log(u/n)/(u/n)). The extra space is O(

√
u), which is the same space

necessary to decompress the text. A weakness of this scheme is that it does not
work well on small texts (say, less than 10 Mb), since in that case the vocabulary
is almost as big as the text itself. Also, it can be applied only to natural language
texts.

Another practical approach is an ad-hoc technique [20], which however is
not so fast, obtains compression ratios of near 70% (against 30% to 40% of
Ziv-Lempel algorithms), and relies on the ASCII encoding.

The second line of research considers Ziv-Lempel compression, which is based
on finding repetitions in the text and replacing them with references to similar

16 Gonzalo Navarro and Mathieu Raffinot

strings previously appeared. LZ77 is able to reference any substring of the text
already processed, while LZ78 references only a single previous reference plus
a new letter that is added. In both cases, the referenced text to be found is
normally limited by a window which precedes the current text position.

String matching in Ziv-Lempel compressed texts is much more complex, since
the pattern can appear in different forms across the compressed text. In [2] a
compressed matching algorithm for LZ78 is presented, which works in time and
space O(m2 + n). For LZ77, the only result is [11], which is a randomized algo-
rithm to determine in time O(m + n log2(u/n)) whether a pattern is present or
not in an LZ77-compressed text, but they do not find all the pattern occurrences.
Other algorithms for different specific search problems have been presented in
[13, 17]. This second branch is rather theoretical and, to the best of our knowl-
edge, no actual implementations have been developed.

In this paper we aim at efficient algorithms for string matching on Ziv-Lempel
compressed texts. We present new theoretical developments but also give prac-
tical implementations and experiments on our algorithms. Our main results are

– We develop a general technique for string matching on a text which is given
as a sequence of blocks. This abstracts the essential features of Ziv-Lempel
compressed texts and is the basis for the algorithms which run over specific
members of the family.

– We apply our technique to LZ77-compressed texts. The result is the first
algorithm to search under this compression scheme (recall that [11] cannot
find all the occurrences of the pattern). The algorithm, however, is O(u)
time at best. In practice, the algorithm is slower than uncompressing the
text and searching it with a classical algorithm.

– We apply the technique to the LZ78 compression scheme. The result is an
algorithm which turns out to be a practical implementation of the theoretical
proposal of [2]. This algorithm is O(n + R) time in the worst and average
case, and is in practice twice as fast as decompressing and searching.

– We propose a hybrid compression scheme which is between LZ77 and LZ78,
which keeps some of the good features of LZ77 and which can be searched
in O(min(u, n logm) + R) time on average (and O(min(u, mn) + R) in the
worst case). In practice, the compression efficiency is similar to LZ77 and
the search time is similar to LZ78.

In all cases our preprocessing cost is O(σ+m) and our extra space is O(n+R),
almost the same necessary to decompress the text. Our approach is practical and
relies on bit-parallelism. Bit-parallelism is a general technique to take advantage
of the fact that the computer operates in parallel over all the bits of the machine
word, so that if a process is so simple that it can be expressed with bit operations
we can perform many of those steps in a single operation of the processor. If we
call w the length in bits of the machine word (typically 32 or 64), then the
possible speedups are up to O(w). The complexity results presented assume
that m = O(w), otherwise we have to multiply the u and n of our complexities
by m/w.

A General Practical Approach to Pattern Matching 17

2 String Matching on Blocks

We describe now a general technique for string matching when the text is pre-
sented as a sequence of atomic strings (here called “blocks”) instead of a sequence
of characters. This technique is the basis for all the different searching algorithms
on Ziv-Lempel compressed text, which are described in the next sections.

Our general assumption is that the blocks either have just one letter (that
we can access directly) or are formed by a concatenation of previously seen
blocks. We describe an online algorithm where we process the text block by
block. At any moment of the search we denote T ′ the text already processed (of
|T ′| characters). When we finish the search, T ′ = T , i.e. the original text.

The method works as follows. We process the blocks one by one. For each
new block B, we compute a description for B which has all the information of
the block which is relevant for the search. This description is denoted D(B) =
(L, O, S, P, M), where

– L = |B|, that is, the length of B in characters;
– O = Offs(B) = the length in characters of the text we had processed when

B appeared;
– S = Suff(B) = all the pattern positions1 which either start a complete

occurrence of B inside the pattern, or start a proper pattern suffix which
matches with a prefix of B. Formally,

Suff(B) = {|x|, P = xBy} ∪ {|x|, |x| > 0 ∧ |z| > 0 ∧ P = xz ∧B = zy} ;

– P = Pref(B) = all the pattern positions which either follow a complete
occurrence of B inside the pattern, or follow a proper pattern prefix which
matches with a suffix of B. Formally,

Pref(B) = {|xB|, P = xBy ∧ |y| > 0} ∪
{|z|, |z| > 0 ∧ |y| > 0 ∧ P = zy ∧ B = x } ;

– M = Matches(B) = all the block positions where the pattern occurs (∅ if
|B| < |P |). Formally,

Matches(B) = {|x|, B = xPy} .

Figure 1 illustrates these concepts.
The description D(B) of a new block B is obtained in two forms: (a) the

block is an explicit letter and then we obtain the description directly, or (b) the
block is a concatenation of other blocks previously known, and we obtain its
description by operating on the descriptions of the previous blocks.

Once the description of the new block is computed, we use that description
to update the state of the search. This concludes the processing of the block and
we move to the next one. The state of the search contains the matches that have
already occurred and the potential matches in progress, that is,
1 To simplify the notation, we number pattern positions starting at zero.

18 Gonzalo Navarro and Mathieu Raffinot

������
������
������
������

��������������������������������������
��������������������������������������

��
��������������������������������������

��������������������������������������
��������������������������������������

S

P �������
�������
�������
�������

��������
����������
��������

��������
����������
��������

��������

S S S S

P P

Fig. 1. Prefixes (P) and suffixes (S) for a long and a short block. The pattern has
the diagonal tiling and the possible blocks have a bar tiling. The suffixes (dotted
lines) and prefixes (dashed lines) are pattern positions. Prefixes are marked after
the position where they finish, suffixes are marked at the position they start.

– Res(T ′) = the text positions that matched up to now, formally

Res(T ′) = {|x|, T ′ = xPy} ;

– Active(T ′) = the set of positions following the pattern prefixes which match
a suffix of the current text. Formally,

Active(T ′) = {|x|, |x| > 0 ∧ |y| > 0 ∧ P = xy ∧ T ′ = zx} .

Hence, when we complete the text processing and T ′ is not a text prefix
anymore but the whole text, Res(T) is our answer. The initial state of the search
is T ′ = ε, and Res(ε) = Active(ε) = ∅.

We have defined already the information we keep, and consider now how to
compute that information. For the formulas that follow, we define some auxiliary
functions, namely

– Lefti(X) = {x− i, x ∈ X} ∪ {m− i, m− i+1, . . . , m−1}, which receives
a set of Suff() positions not smaller than i, subtracts i to all them and then
adds new pattern positions filling the hole left by the shift.

– Righti(X) = {x + i, x ∈ X} ∪ {1, 2, . . . , i}, which does the same for
Pref() positions, in the other direction.

– Addi(X) = {i + x, x ∈ X}, which adds i to all the elements of the set.
– Subtri(X) = {i− x, x ∈ X}, which subtracts all the elements of the set

from i.

2.1 Description of a Letter

The base case of our scheme is to obtain the description of a block which is a
letter a. The following is obtained by direct application of the general formulas.

– |B| = 1
– Offs(B) = |T ′|
– Suff(B) = {|x|, P = xay}
– Pref(B) = {|xa|, P = xay ∧ |y| > 0}
– Matches(B) = if P = a then {0} else ∅

A General Practical Approach to Pattern Matching 19

2.2 Concatenating Two Blocks

Assume that our block B is defined as the concatenation of one or more previous
blocks. If only one previous block B′ is referenced, we just copy its definition. We
show now how to concatenate two blocks, since the case of more than two blocks
is a simple iteration over this procedure. We are given two blocks B1 and B2, and
we have to obtain the description for their concatenation D(B) = D(B1B2) =
D(B1) · D(B2) (where we define · as the concatenation of block descriptions).
The formulas are as follows

– |B| = |B1| + |B2|
– Offs(B) = |T ′|
– Suff(B) = Suff(B1) ∩ Left|B1|(Suff(B2))
– Pref(B) = Pref(B2) ∩ Right|B2|(Pref(B1))
– Matches(B) = Matches(B1) ∪ Add|B1|(Matches(B2))

∪ (Subtr|B1|(Pref(B1) ∩ Suff(B2)) ∩ {0, 1, 2, . . . , |B|−m})

We explain now the rationale for the formulas (see Figure 2). The first two
are immediate. For Suff(B), note that Suff(B1B2) considers that either a prefix
of B1 may be a suffix of P or B1 may be completely inside P followed by a prefix
of B2 matching the a suffix of P . That is, if the number i belongs to Suff(B1B2)
then either

– i ≥ m−|B1|, that is, a prefix of B1B2 is a suffix of P . Notice that in this case
also a prefix of B1 is a suffix of P . Since Left|B1| will add all these positions,
they will appear in the result if and only if they are present in Suff(B1),
which is correct.

– i < m−|B1|, that is, B1 appears inside P and is immediately followed by an
occurrence of B2 (which can be a complete occurrence or share a prefix with
the pattern suffix). If we subtract |B1| to the elements in Suff(B2), then we
are interested in the positions which also appear in Suff(B1) (which since
i < m − |B1| can only correspond to complete occurrences of B1).

�������������������������
�������������������������
�������������������������
�������������������������

����������������
����������������
����������������
����������������

��������������
��������������
��������������
��������������

��

���������������������������� ������������������������������

P S S S

B1 B2

B1 B2

B1 B2

Fig. 2. Suffixes of the concatenation of two blocks. It is possible that the result
involves only B1 (rightmost pair) or that it involves both. In this case B1 is
completely inside the pattern and B2 may or may not be totally inside (leftmost
and middle pairs, respectively).

20 Gonzalo Navarro and Mathieu Raffinot

The rationale for Pref() is analogous to Suff(). For Matches(B), there are
three parts. The first one is the matches which are inside B1, and the second one
is the same for B2 (displaced since now B2 comes after B1 in B). The third one
accounts for matches that appear only when B1 and B2 are concatenated. If a
prefix of the pattern is at the end of B1, and the corresponding suffix is at the
beginning of B2, then we have the pattern in B1B2. The Subtr converts pattern
to block positions and the final set which is intersected with the results ensures
that we have really prefixes and suffixes instead of substrings of the blocks.

2.3 Updating the Search State

We want now to update the state of our search by processing a new block B
whose description has just been computed. The formulas to obtain the new
Res(T ′B) and Active(T ′B) values from the old Res(T ′) and Active(T ′) ones are

– Active(T ′B) = Right|B|(Active(T ′)) ∩ Pref(B)
– Res(T ′B) = Res(T ′) ∪ Add|T ′|(Matches(B)) ∪

Subtr|T ′|(Active(T ′) ∩ Suff(B) ∩ {m−|B|, m−|B|+1, . . . , m−1})
The new Active(T ′B) value considers that, since a new block B has been

added to T ′, the pattern prefixes that are suffixes of T ′B are those that are
already suffixes of B (i.e. Pref(B)), or those which are suffixes of T ′ and are
followed by B in the pattern. As before, Right does the trick of considering both
cases in a single formula.

The new value Res(T ′B) adds to Res(T ′) not only the matches which are com-
pletely inside B, but also those which appear when T ′ is concatenated to B. For
this sake, we consider pattern prefixes which are suffixes of T ′ (i.e. Active(T ′)),
and which are followed by the corresponding pattern suffix in B. The final in-
tersection ensures that the complete pattern has appeared. Figure 3 illustrates.

�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������

��������
��������
��������
��������

�����������
�����������
�����������

�����������
�����������
�����������

P

B

P

P

PP

T’

�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������

�������������������
�������������������
�������������������
�������������������

������������
������������
������������

������������
������������
������������

P S

B

P P

T’

Fig. 3. Updating the state of the search. In the first case we illustrate the up-
dating of Active(T ′) (a short block is added). In the second case we show how
the matches are updated (when a long block is added). In general both updates
are necessary.

3 A Bit-Parallel Implementation

Until now, we have defined our algorithms in terms of sets of pattern positions.
We present now a very well-suited implementation paradigm which allows to
convert the previous algorithms into efficient implementations.

A General Practical Approach to Pattern Matching 21

We use the technique called bit-parallelism [3]. This technique takes advan-
tage of the fact that the processor works in parallel on all the bits of the computer
word. We call w the number of bits of the computer word, which is 32 or 64 in
current architectures. If one is able to map the elements of a set on bits, and to
express the operations to perform on them by using only the operators provided
by the processor (which are rather limited, i.e. bit shifts, masking, etc.), then
one can effectively parallelize the work on the set, obtaining speedups of up to
O(w) over the original algorithm.

This paradigm was invented in 1989 by Baeza-Yates and Gonnet [4] for a
text searching algorithm called Shift-Or. If we consider m ≤ w, then we keep
the state of the search in a computer word D, whose i-th bit tells whether the
prefix of length i of the pattern matches the current text suffix. All the bits start
with value zero, and a match is reported whenever the m-th bit of D signals a
match. The update formula upon reading a new text character is

D′ = (D << 1) | S[a]

where S[a] is a mask whose i-th bit tells whether Pi = a, we are assuming that
0 represents a match and a 1 a mismatch, “|” is the bitwise-or of the computer
word, and “<< `” is a bit shift operation which assigns the i-th bit to the
(i + `)-th, setting the first ` bits to zero. Other operations allowed in most
architectures are bitwise-and (&), shift to the other direction (>>), and, which
is more sophisticated, arithmetic operations such as addition and subtraction
which operate on the bit mask as if it were a number.

The Shift-Or algorithm is O(n) provided m ≤ w. If the computer word is
too short to hold one bit per pattern position, then dm/we computer words are
used for the simulation, and the search takes in the worst case O(mn/w) time.
It is not hard to show that on average it takes O(n), since O(1) computer words
have active states on average.

Our implementation can indeed be seen as a Shift-Or algorithm working on
blocks instead of letters. The sets Pref(B), Suff(B), and Active(T ′) are repre-
sented by bit masks. Hence, for blocks of one letter a we have Suff(B) = S[a] and
Pref(B) = (S[a] << 1). The formulas to concatenate blocks are directly trans-
lated by noticing that Left` and Right` are converted into “>> `” and “<< `”,
respectively (taking care of the borders which must get active bits), and union
and intersection are converted into “|” and “&” respectively. Hence, all those
operations on sets are performed in O(1) time if m ≤ w, and O(m/w) time in
general. In practical text searching we can assume m = O(w).

On the other hand, the sets Res(T ′) and Matches(B) are explicitly stored
in an array. However, it is not difficult to see that the total amount of work to
handle them is O(R), where R is the number of occurrences of the pattern in
the text. The cost cannot be o(R) if we report all the occurrences.

Hence, if f(n) concatenations are performed along all the process, our total
search cost is O(f(n) + R). The value of f(n) depends on the compression algo-
rithm. We have also to add a preprocessing cost to build the S[] table, which is
O(σ + m).

22 Gonzalo Navarro and Mathieu Raffinot

In all cases, the space complexity of our algorithms is O(n + R), since we
need to store the descriptions of the blocks already seen and the matches found.
Notice that this n refers in fact to the size of the compression window, and the
R to the matches present in that window only.

Finally, we consider the practical problem of uncompressing a neighborhood
of the occurrences. In practice it is undesirable that we just give the text posi-
tions matching the pattern. It is much better to uncompress and show a neigh-
borhood of the match. This neighborhood can be defined as the line holding
the occurrence, the record (delimited by some given pattern), a fixed number of
characters, etc.

Assume that we know a pattern position and want to show a neighborhood.
We just decompress the surrounding blocks forward and backward, until from the
plain text obtained we determine that the neighborhood has been decompressed.
To decompress a block we have two cases: (a) the block is a letter, in which case
we deliver the letter, (b) the block is a concatenation of other blocks, in which
case we decompress each of those blocks in turn. This process takes O(N) time
at most (where N is the size of the decompressed neighborhood), since at each
step we either obtain one character of N or split the final text to be obtained,
and it is not possible to split it more than O(N) times. This shows that it is
practical to show a part of a Ziv-Lempel compressed file without necessarily
uncompressing the whole file.

4 LZ78 Compression

4.1 Compression Algorithm

The Ziv-Lempel compression algorithm of 1978 (usually named LZ78 [32]) is
based on a dictionary of blocks, in which we add every new block computed.
At the beginning of the compression, the dictionary contains a single block b0

of length 0. The current step of the compression is as follows: if we assume
that a prefix t1 . . . ti of T has been already compressed in a sequence of blocks
Z = b1 . . . bc, all them in the dictionary, then we look for the longest prefix of the
rest of the text ti+1 . . . tu which is a block of the dictionary. Once we found this
block, say bk of length lk, we construct a new block bc+1 = (k, ti+lk+1), we write
the pair at the end of the compressed file Z, i.e Z = b1 . . . bcbc+1, and we add
the block to the dictionary. It is easy to see that this dictionary is prefix-closed
(i.e. any prefix of an element is also an element of the dictionary) and a natural
way to represent it is a trie.

We give as an example the compression of the word ananas in Figure 4. The
first block is (0, a), and next (0, n). When we read the next a, a is already the
block 1 in the dictionary, but an is not in the dictionary. So we create a third
block (1, n). We then read the next a, a is already the block 1 in the dictionary,
but as do not appear. So we create a new block (1, s).

The compression algorithm is O(u) in the worst case and efficient in practice
if the dictionary is stored as a trie, which allows rapid searching of the new text

A General Practical Approach to Pattern Matching 23

0

1

a

2

n

0

1

a

2

n

n

3

0

1

a

2

n

n

3

s

4

1

a

0

a

(0,a)

Prefix encoded

Dictionary

Compressed file

an

(0,a)(0,n)

anan

(0,a)(0,n)(1,n) (0,a)(0,n)(1,n)(1,s)

ananas

Fig. 4. Compression of the word ananas with the algorithm LZ78.

prefix (for each character of T we move once in the trie). The decompression
needs to build the same dictionary (the pair that defines the block c is read
at the c-th step of the algorithm), although this time it is not convenient to
have a trie, and an array implementation is preferable. Compared to LZ77, the
compression is rather fast but decompression is slow. LZ78 is used by Unix’s
Compress program.

Many variations on LZ78 exist, which deal basically with the best way to code
the pairs in the compressed file, or with the best way to update the window. A
particularly interesting variant is from Welch, called LZW [28]. In this case, the
extra letter (second element of the pair) is not coded, but it is taken as the first
letter of the next block (the dictionary is started with one block per letter). A
variant over this is presented by Miller and Wegman [21] (which we call LZMW),
where the new block is not the previous one plus the first letter of the new one,
but simply the concatenation of the previous and the new one.

4.2 Pattern Matching in LZ78 Compressed Files

Our general algorithm for searching in a sequence of blocks Z = b1 . . . bn can
be directly applied if we consider the new letter added after each block created
by the LZ78 compression algorithm as a separate block. That is, each new pair
(k, a) read at step c is taken as a reference to a previous block (bk) followed by
a literal block (a). Hence, we compute the description of the concatenation of
bk and a and add it as the new block bc to our dictionary. At the same time,
we update the state of the search using the description of bc just computed. Of
course, in practice we manage this one-letter block in a special way, to speed-up
the block concatenation. We keep all the descriptions of the blocks bk in an array
which is directly accessed.

The algorithm we obtain is quite the same as in [2]. The main differences are
that we obtain this algorithm as a particular case of a general string search al-
gorithm for text that comes in blocks, that their algorithm is originally designed
for LZW compression, and that we search all the occurrences of the pattern, not
only the first one. Moreover, we present a practical implementation based on

24 Gonzalo Navarro and Mathieu Raffinot

bit-parallelism, while [2] is a theoretical work that has not been implemented.
To our knowledge ours is the first real implementation of this algorithm2. It is
quite easy to adapt our algorithm to work on other variants of LZ78, such as
LZW or LZMW. In particular we can easily adapt to different window man-
agement policies. The simplest one is that when the compressor memory is full,
the dictionary is deleted and compression is restarted. Others try to remove the
least interesting blocks from the dictionary, e.g. [12]. Our searcher can follow
the same steps of the compressor along the search, using the same amount of
memory.

4.3 Analysis

The theoretical complexity of the pattern matching algorithm is O(n+R) (recall
that, as we use bit-parallelism, we have O(mn/w + R) time for long patterns).
If n = o(u), this is faster than searching in the uncompressed text. In practical
terms, the algorithm is rather efficient since no extra work apart from one block
concatenation and one update of the search is performed per element of the
compressed file.

Our experimental results, however (Section 7), show that the algorithm takes
in practice twice the time of a Shift-Or run on the uncompressed text. This is
because Shift-Or is very simple, and although we process many characters of the
uncompressed text in one shot, in practice the cost of each step is big enough to
amortize any possible gain due to compression. A specific problem is the locality
of reference: the compressed matching algorithm reads random positions in the
array of block definitions, while the uncompressed algorithm works basically in-
place. The caching mechanism of the computer largely favors this last approach.

However, there is a positive result. Searching the compressed file with this
algorithm is twice as fast as decompressing it and then searching the uncom-
pressed file. For this comparison we are assuming that the file is compressed
with LZ77 (which is much faster than LZ78 to decompress) and consider the
time of gunzip, which is an optimized decompression software. Hence, if the text
collection is kept compressed (which is definitely of interest) then it is much
faster to search directly the compressed files.

We have tried to further improve our algorithm. For instance, we have created
a variant called Mark-LZ78. In this compression algorithm, we mark with a bit
flag for each block if the block is a leaf of the dictionary trie or not, to avoid
storing the block description if this block is not used anymore. However, as we
show in the experiments, the performance does not improve.

5 LZ77 Compression

5.1 Compression Algorithm

The Ziv-Lempel compression algorithm of 1977 (usually named LZ77 [31]) is,
in some sense, simpler than LZ78, since the basic idea is just to recognize two
2 See, however, [18], in this very same conference.

A General Practical Approach to Pattern Matching 25

repeated segments of the text and to mark the second as a reference (position in
the text and length of the repeated part) to the first one. More formally, assume
that a prefix t1 . . . ti of T has been already compressed in a sequence of blocks
Z = b1 . . . bc. We look for the longest prefix v of ti+1 . . . tu which appears already
in t1 . . . titi+1 . . . ti+|v|−1. Once we have it, say that we find it starting at position
j ≤ i, we add a new block (j, |v|) to the compressed file Z. A special case occurs
if v is empty, in which case ti+1 is a new letter and we code it with a special block
(0, ti+1). With the same example ananas, we obtained: (0, a) nanas; (0, a)(0, n)
anas; (0, a)(0, n)(1, 3) s; (0, a)(0, n)(1, 3)(0, s).

Notice that the above definition allows that the referenced block overlaps
the one which is being compressed. Another variant avoids this for simplicity,
i.e. v must be found in t1 . . . ti. In this case the compression of ananas be-
comes: (0, a) nanas; (0, a)(0, n) anas; (0, a)(0, n)(1, 2) as; (0, a)(0, n)(1, 2)(1, 1)
s; (0, a)(0, n)(1, 2)(1, 1)(0, s).

Yet another variant codes the repeated block and then the letter which follows
it in the still uncompressed text. There are many other variants as well, mainly
related to how to represent the pairs in the compressed file and how to compress
fast. In general, the position j is coded as the difference i + 1− j, since the last
occurrence of the block is used and v is normally restricted to not appear too
far away from ti.

LZ77 compresses more than LZ78, both in theory and in practice. From a the-
oretical point of view, the variant which allows overlaps can obtain a compressed
file of O(1) blocks in the best case, while the one not allowing overlaps obtains
at most O(log u). LZ78, on the other case, cannot obtain less than O(

√
u). This

is easily seen by considering the best-case file T = au. In practice it is also true
that LZ77 compresses more than LZ78. LZ77 is implemented in the Gnu gzip
program.

Compression is rather slow with LZ77. It is expensive in time and space to
find the longest prefix of the uncompressed part of the file that appears already
in the compressed part. In theory, the compression is O(u) in time and space by
the use of a suffix tree or a DAWG automaton [31, 30]. In practice, the search in
done in a buffer window and an large hash table is normally used, as in gzip. An
experimental comparison of different techniques to find the prefix can be found
in [6]. The decompression algorithm, on the other hand, is very fast (faster than
for LZ78) because to decompress a block is it just necessary to copy a part of
the text and no dictionary has to be kept.

5.2 Pattern Matching in LZ77 Compressed Files

Our algorithm for LZ77 is an adaptation of the general algorithm on blocks, with
a main difference. On LZ77 compressed files, when we want to process a new
block, the situation shown in Figure 5 generally occurs: the new block references
a sequence of r contiguous previously processed blocks, but it overlaps with the
first and last one (u and v in the Figure). That is, the new block does not
exactly correspond to previously processed blocks. Therefore, we do not have all
the information on the blocks u and v that we need to concatenate the blocks.

26 Gonzalo Navarro and Mathieu Raffinot

We solve this by computing recursively the descriptions of the two blocks
u and v with the same method. That is, we simulate that we are back in the
text, where those blocks appeared, and compute their description (this may
trigger more recursive invocations with the same purpose). When we finally
obtain the descriptions of u and v, we concatenate all the referenced blocks to
obtain the description of the new block. Another possibility is that the new block
is completely inside another block already processed, in which case we have to
recursively consider the blocks that define the referenced block.

����������������������
����������������������
����������������������
����������������������

���������������������
���������������������
���������������������
���������������������

��
��
��
��

����
����
����
����

Blocks already computed

v New Blocku

Fig. 5. Recursive computation of the description of a block in LZ77 compressed
files.

We explain now a technique to concatenate the r blocks in low average time.
Instead of computing Pref(B) and Suff(B) of the first block, then concatenating
with the second, then to the third, until the r blocks are concatenated, we
compute Suff(B) from the first block to the r-th and Pref(B) from the r-th
block to the first one. We analyze this shortly.

5.3 Analysis and Improvements

We analyze now the many aspects of our algorithm and propose some improve-
ments.

Block concatenation. If we use the proposed block concatenation technique, we
have that in the worst case only the first m blocks can affect Suff(B) and only
the last m blocks can affect Pref(B), so the worst case time for concatenating
the blocks becomes O(min(u, mn)).

We show now that on average only O(log m) blocks are processed until
Suff(B) becomes stable. Each new block character we process will either ex-
tend the current suffixes of the set Suff(B) or make them disappear from the
set. Each suffix is removed from the set with probability 1− 1/σ (i.e. if the new
character block cannot extend it). Before we read the block characters all the m
pattern positions are in Suff(B), and therefore on average no pattern positions
remain in the set after O(log m) block characters are read (after the i-th char-
acter is read, the pattern positions m− i to m− 1 cannot be removed from the
set, but their situation cannot change anyway).

Even if we consider all blocks of length 1 (the worst), we work on average
O(n log m) because of concatenations. The same reasoning holds for Pref(B).

A General Practical Approach to Pattern Matching 27

The only part of the block concatenation which cannot skip blocks is the
computation of Matches(B). However, this adds up O(R) time along all the
search. Therefore, the total time for block concatenation is O(min(u, n logm) +
R) on average.

Finding the blocks. We consider now how to find the indices of the block that
define a text position j. We keep an array with the blocks already seen. Binary
searching the text position among these blocks adds O(n log n) to the cost. In-
stead, we keep a table of O(n) entries where the element i points to the block
where the text position biu/nc is defined. By accessing this table we directly
arrive at the correct block with an average inaccuracy of O(u/n), and a fi-
nal binary search finds the correct position, for a total cost of O(n log(u/n))
(in practice a linear search is faster for the final part). This gives good re-
sults in practice. Another alternative is that the compressor does not store the
text position and length of the repeated part, but instead it gives the block
numbers involved and the offsets inside u and v. Since a text position needs
O(log u) bits and a block number plus an offset inside the block needs on aver-
age dlog2 ne+dlog2(u/n)e = O(log u) bits, the order of compression ratio should
not worsen. We show in the experiments that this version of the algorithm (called
Block-LZ77) is faster than the plain version, since no searching of the text po-
sition is necessary. However, compression ratios worsen significantly in practice
due to round-offs.

Computing partial blocks. However, the really costly part of the algorithm is
not here, but in the recursive computation of the partial blocks u and v. If we
consider that each time we perform a recursive call we “split” the original block
B at a new position, then it is clear that at most |B| recursive calls can be
done until we have split it in single characters and therefore we have found the
definition of each one. This shows that the total cost of the recursive calls is
O(u) in the worst case. Our experiments suggest that this is also the average
case, but we were not able to prove it.

Consider now the cost of the recursive invocations in the case where the
new block B is strictly inside its referencing block. For instance, a letter which
repeats inside a large block could trigger a long chain of recursive invocations
until its real definition is found. In the worst case, we could have a block of
size s which references one of size s − 1, and this one references another of size
s − 2, and so on. We would work O(s), but the size of the text at that point
is O(s2). Hence, at text position i we cannot work more than

√
i, which gives

a total worst-case cost of O(n
√

u), which is too high. This problem does not
disappear if the compressor always stores the first occurrence of the repeated
block instead of the last one, because we may not point to the first occurrence
when we consider partial blocks.

Hence the total amount of work is ω(u) in the worst case whenever n =
ω(
√

u), and we conjecture that this is also the average case. See the left plot of
Figure 6, where we have experimented with the English text described in Sec-
tion 7. Least squares fitting shows that a good model for the number of recursive

28 Gonzalo Navarro and Mathieu Raffinot

invocations per text character is 0.177 + 0.1 lnu (with less than 0.5% error in
the approximation). The experiment suggests that the algorithm is O(u log u)
on average. This is, unfortunately, worse than uncompressing and searching. We
present now some techniques to improve this situation.

Improvements. A first improvement we tried consisted in storing more informa-
tion than simply one description per block. For instance, when we compute the
description for the partial blocks u and v (which are not part of the original
sequence of blocks), we could store instead of discarding them. If later another
block needs the description of u and v, we have already computed them. Fig-
ure 6 (right plot) shows that the total amount of recursive calls is reduced using
this technique, and we conjecture that in this case we work O(u) (least squares
fitting yields a complexity of O(u0.99927)). These blocks, however, cannot be eas-
ily stored in the array of blocks since they do not belong to the sequence. A
hashing implementation gave bad results in practice, that is, the cost to add the
new blocks outweighted the gains of having them already computed. This could
change for longer texts, if the orders of the two algorithms are different.

200 400 600 800 1000 1200

0.4

1.6

0.4

0.6

0.8

1.0

1.2

1.4

u

200 400 600 800 1000 1200

0.4

1.6

0.4

0.6

0.8

1.0

1.2

1.4

n

Fig. 6. Number of recursive invocations (thick line) and block concatenations
(thin line) per text character, for natural language text. The left plot shows
the basic algorithm and the right plot shows the improvement of adding the
computed blocks.

Another improvement, which gave good practical results, was to try to com-
pute less (instead of more) information. Our aim was to avoid the recursive com-
putation of u and v. Hence, instead of computing their descriptions recursively,
we pessimistically assume that they match all the pattern positions. If they are
short enough we will not have a match even assuming this, and we could pro-
cess them without actually obtaining their descriptions. Only when we find a
(possible) match we backtrack to the point where it could have been started and
compute correctly the involved blocks. For each block, we store whether it has
been correctly or pessimistically computed. As we show in the experiments, this

A General Practical Approach to Pattern Matching 29

improves search time for patterns of length 15 or more in practice. However, the
method is limited since we cannot skip more than m characters of T without
having at least one character correctly computed, hence in the very best case we
pay O(u/m) with this speedup. We call this algorithm Skip-LZ77 (and combined
with Block-LZ77 it yields Skip-Block-LZ77).

Final remarks. Even with all these improvements, the experiments show that
this algorithm is much slower than decompressing (with gunzip) and search-
ing (with Shift-Or). Although ours is the first algorithm to directly search in
LZ77-compressed text, we believe that it is not possible in practice to beat a
decompress-then-search approach. The root of this limitation lies in the need to
recursively compute u and v. Another consequence of the existence of partial
blocks is that, even if the compressor uses a window of fixed size to select the
strings to repeat, we need to keep in memory all the previous blocks, since even if
they are not directly referenced anymore, we may need to resort to them in case
of partial blocks. We propose in the next section a slightly different compression
scheme which gets rid of all the aspects of LZ77 compression that degrade the
searching performance.

We finish this section with a couple of comments. First, as it is clear from the
algorithm, we do not handle the case of overlapping compression, i.e. when the
referenced block can overlap with the new block B. Although we could handle
it, the result is the same in cost as if the compressor avoided such overlapping
(i.e. performing many steps, where a step ends when an overlap occurs). Second,
other variants of LZ77 are easily accommodated. Finally, we notice that a neigh-
borhood of size N around the occurrences can be obtained using the general
mechanism at O(N

√
u) cost (or, according to the empirical results, O(N log u)

cost). This is because of the cost to find the definitions of the incomplete blocks.

6 A New Hybrid Compression Algorithm

It became clear in the previous section that the worst part of the cost of the
LZ77 search algorithm was due to the cost of recursively computing partial
blocks, and of finding the block corresponding to a text position. We design
a new compression algorithm between LZ78 and LZ77, to have multiple-block
compression (not just one block like in LZ78), but also to avoid the recursive
situation which appears in searching LZ77-compressed files (Figure 5).

We propose the following algorithm. Assume that a prefix t1 . . . ti of T has
been already compressed in a sequence of block Z = b1 . . . bc. We look now for
the longest prefix v of ti+1 . . . tu which is represented by a sequence br . . . br+h al-
ready present in the compressed file. If there are many alternative choices for the
same v, we take the one with the minimum of blocks (to reduce the cost of con-
catenations). And if still several possibilities occur, we take the first occurrence
(the minimum in the number of the first block). We code this new block by (r, h).
As in LZ77, if v is empty (i.e the letter ti+1 is new), we code a special block
(0, ti+1). With the same example ananas, we obtain: (0, a) nanas; (0, a)(0, n)
anas; (0, a)(0, n)(1, 1) as; (0, a)(0, n)(1, 1)(1, 0) s; (0, a)(0, n)(1, 1)(1, 0)(0, s).

30 Gonzalo Navarro and Mathieu Raffinot

The main advantage of this compression scheme is that it avoids the recursive
case in the LZ77 pattern matching (Figure 5), because we know already that the
new block corresponds directly to a concatenation of already processed blocks.
Moreover, we do not need to search the text position in the blocks, since we can
directly access the relevant blocks.

The compression can still be performed in O(u) time by using a sparse suffix
tree [16] where only the block beginnings are inserted and when we fall out
of the trie we take the last node visited which corresponds to a block ending.
Decompression is slower than for LZ77, since we need to keep track of the blocks
already seen to be able to retrieve the appropriate text. Finally, the compression
ratio is in principle worse than for LZ77 since we are limited in the text segments
that we can use. On the other hand, the numbers to code are smaller since we
code block positions in O(log n) bits instead of text positions in O(log u) bits.
Moreover, if we use a simple trick, the compression is in general better than for
LZ78 since we are not limited to using just one block. The trick is to represent
the pairs (r, 0) as (2r), and the pairs (r, h+1) as (2r+1, h). This pays off because
the second element of the pair is frequently zero.

The searching algorithm is like that of LZ77 except because we do not need
to search for the blocks and we do not have to recursively find the partial blocks
u and v (they simply do not exist now). From the analysis of the LZ77 pattern
matching algorithm we have that we work O(min(u, n logm) + R) on average
and O(min(u, mn) + R) in the worst case (thanks to the improved algorithm
to concatenate blocks). In practice, this algorithm performance is very close to
LZ78 pattern matching. We also tried a marked version (called Mark-Hybrid)
where for each block a bit is stored which tells whether or not the block will be
used again, but as for LZ78, the search time does not improve in practice.

Unlike LZ77, we can use less memory if the compressor restricts the references
to a window of the text. Since there are no recursive references, those blocks
which are far away in the past need not be stored since they will not be referenced
anymore. Hence, as in LZ78, we need the same memory as the compressor. A
window of size N can be displayed in O(N) time.

7 Experimental Results

We show in this section our empirical results on the behavior or our search and
compression schemes. We first study the compression techniques and later the
search performance.

We use mainly two files for the experiments. One is an English literary text
(from B. Franklin) of 1.29 Mb, filtered to lower-case and with separators normal-
ized. The other is the DNA chain of “h.influenzae”, of 1.36 Mb. For comparative
purposes, we also show the results on some files of the the Calgary Corpus3: two
books (book*), six troff-formatted scientific articles (paper*) and three source
program codes (prog*).

3 ftp://ftp.cpsc.ucalgary.ca/pub/projects/text.compression.corpus/

A General Practical Approach to Pattern Matching 31

7.1 Compression Performance

It is interesting to study the compression performance of the algorithms for two
reasons: first, we propose a hybrid compression scheme which we have to evaluate
in terms of compression ratios. Second, our search algorithms use a technique
to code the pairs which speeds up search time but which is suboptimal: the
numbers are stored in as many bytes as needed (using the highest bit to denote
if there are more bytes or not).

We first compare the number of bits needed to code a file with our hybrid
compression scheme against the same number for LZ77 and LZ78. We call this
approach “bit-coding”. This is aimed to give and idea of the expected compres-
sion performance when the file is compressed with a real technique (such as Elias
[10] or Huffman codes). Many other improvements are possible. A deeper study
of the best techniques for our hybrid compressor is deferred for future study.

Table 1 shows the results. The “Ideal” column counts exactly the bits used
by each number stored in the compressed file, while both “Elias” columns count
the number of bits needed to represent the numbers using these codes4 [10]. The
letters, on the other hand, are Huffman coded. For English and DNA we show
in a second line the percentages for different variants of the compressors: Block-
LZ77, Mark-LZ78 and Mark-Hybrid, respectively. With our Hybrid compression
method, we obtain estimated compression ratios comparable to LZ77. The Hy-
brid and LZ77 compression is better than LZ78 except for DNA, where only two
bits are necessary to code a letter. Block-LZ77, on the other hand, compresses
quite badly.

We now perform a practical comparison using our byte-coding techniques
against good LZ77 and LZ78 compressors, namely gzip and Compress respec-
tively. This is to show how much compression are we loosing in order to ease the
searching process.

Table 2 shows the compression ratios achieved. The percentages in the sec-
ond row of English and DNA have the same meaning as before. Interestingly,
Compress is better than gzip on DNA, which rarely happens on natural language
texts. Our compression ratios show a penalty with respect to those of gzip. Our
byte compression method is very simple, and these results show in which pro-
portion our compression ratios could be improved by engineering techniques,
keeping in mind that complicating the encoding of the numbers risks slowing
down the pattern matching process.

7.2 Search Algorithms

We compare now the search time for our algorithms against the decompressing
and searching approach. The experiments were run on a Sun UltraSparc-1 of 167
MHz, with 64 Mb of RAM, running Solaris 2.5.1. We consider user time, which
is within 2% of accuracy with 95% confidence. Time is expressed in seconds
everywhere in this section.
4 Recall that Elias-γ precedes the number x by its length in unary, while Elias-δ uses

Elias-γ to code that length that precedes the number.

32 Gonzalo Navarro and Mathieu Raffinot

File Size Ideal Elias-γ Elias-δ
(Kb) LZ77 LZ78 Hybrid LZ77 LZ78 Hybrid LZ77 LZ78 Hybrid

English 1,324 29.67% 36.15% 29.28% 59.34% 64.01% 58.57% 48.96% 52.04% 46.17%
52.45% 38.01% 31.24% 104.9% 82.31% 62.48% 74.25% 54.71% 48.75%

DNA 1,390 28.03% 25.30% 29.08% 56.06% 47.33% 58.18% 45.77% 37.71% 46.40%
47.21% 26.77% 31.15% 94.43% 67.62% 62.30% 73.14% 39.91% 49.03%

book1 751 34.10% 40.70% 35.62% 68.20% 70.83% 71.25% 41.26% 44.96% 41.50%
book2 597 29.33% 40.21% 30.44% 58.66% 69.46% 60.89% 35.51% 44.41% 35.72%
paper1 52 32.33% 46.20% 34.29% 64.53% 77.01% 68.59% 41.05% 51.92% 41.91%
paper2 80 32.68% 43.00% 34.80% 65.27% 72.84% 69.60% 41.08% 48.28% 42.01%
paper3 45 35.10% 45.50% 38.12% 70.07% 76.23% 76.24% 44.84% 51.36% 46.55%
paper4 13 37.60% 47.95% 41.07% 74.74% 78.30% 82.15% 49.92% 54.81% 51.55%
paper5 12 39.85% 50.79% 41.74% 79.13% 82.42% 83.49% 52.63% 57.92% 52.39%
paper6 37 33.60% 47.72% 35.69% 67.03% 79.08% 71.38% 42.91% 53.72% 43.81%
progc 39 32.21% 47.99% 34.16% 64.24% 79.14% 68.32% 41.24% 53.96% 41.95%
progl 70 22.45% 39.10% 23.30% 44.82% 65.83% 44.92% 28.04% 43.85% 27.65%
progp 48 21.34% 40.36% 22.46% 42.54% 66.95% 46.60% 27.16% 45.33% 28.46%

Table 1. Estimated compression ratios with three different methods. For each
number in the compressed file, if we note n the bits needed to code it, then Ideal
counts only n, Elias-γ counts 2n and Elias-δ counts n + 2dlog2 ne. The second
line (in italics) of English and DNA correspond to Block-LZ77, Mark-LZ78 and
Mark-Hybrid, respectively.

File gzip Compress Byte-LZ77 Byte-LZ78 Byte-Hybrid

English 35.58% 38.90% 44.49% 54.41% 43.29%
79.32% 56.20% 45.24%

DNA 30.44% 27.96% 41.07% 43.17% 42.23%
75.24% 44.90% 44.22%

book1 40.76% 43.19% 53.21% 59.92% 53.30%
book2 33.83% 41.05% 45.60% 58.55% 46.53%
paper1 34.94% 47.17% 54.70% 66.17% 52.67%
paper2 36.19% 43.99% 54.65% 62.02% 52.10%
paper3 38.89% 47.63% 60.19% 67.92% 58.75%
paper4 41.66% 52.36% 69.20% 75.71% 68.24%
paper5 41.78% 55.04% 72.27% 79.47% 68.16%
paper6 34.72% 49.06% 56.84% 69.33 % 54.76%
progc 33.51% 48.32% 54.97% 67.99% 51.95%
progl 22.71% 37.89% 37.82% 55.30% 35.47%
progp 22.77% 38.90% 35.97% 57.20% 34.20%

Table 2. Compression ratios for classical compressors and our byte versions. The
second (italics) lines of English and DNA correspond to Block-LZ77, Mark-LZ78
and Mark-Hybrid, respectively.

A General Practical Approach to Pattern Matching 33

In general, searching a compressed text has the additional advantage over
the uncompressed text that it performs less I/O. However, this is relevant if
we compare compressed versus uncompressed searching. This is not what we
compare here: we consider that the text is always compressed. Hence, we measure
the cost of searching it without decompressing versus the cost of decompressing
it and then searching. Clearly the last task can be done using an intermediate
buffer in main memory, and therefore the I/O is the same in both cases.

Figure 7 compares the marked and unmarked versions of LZ78 and the Hybrid
compressor. As it can be seen, there is no advantage in practice by the use of
marking. Therefore, we do not further consider the marked versions. Another
conclusion we take from the figure is that the searcher for Hybrid compression
is slightly faster than for LZ78 on English but slower for DNA. This may be
related to the good performance of the LZ78 compressor on DNA.

• •
• • • •

•
•

• • • • • •

◦

◦
◦ ◦ ◦ ◦

◦

◦

◦ ◦ ◦
◦ ◦

◦

5 305 10 15 20 25 30

0.15

0.23

0.15

0.17

0.19

0.21

0.23

m

•
• • • • •

•

• • • • • •

◦

◦ ◦ ◦ ◦
◦

◦

◦ ◦ ◦ ◦ ◦ ◦

5 305 10 15 20 25 30

0.13

0.21

0.13

0.15

0.17

0.19

0.21

m

◦ LZ78
◦ Mark-LZ78

• Hybrid
• Mark-Hybrid

Fig. 7. Comparison between the marked and unmarked versions of LZ78 and
Hybrid compressors. The left plot is for English text and the right one for DNA.

Figure 8 compares all the search algorithms together, as well as decompres-
sion (with gunzip) plus search time (with Shift-Or and BNDM [25], a bit-parallel
searcher which is the fastest in practice together with [27]). It can be seen that
Block-LZ77 improves significantly over LZ77, and that the Skip-LZ77 versions
improve as the pattern length grows. However, all the LZ77 search algorithms
are not competitive against decompressing and searching, especially on DNA.
On the other hand, both the Hybrid and LZ78 search algorithms are twice as
fast as decompressing and searching.

Table 3 compares the time to search a random 10-letter pattern on English,
DNA and the selected files of the Calgary Corpus. We consider the time to
decompress with gunzip and to search with Shift-Or (as seen, for m = 10 the
time is very close to BNDM). We show the results for LZ78 and Hybrid only, as
LZ77 has been shown to be much inferior.

34 Gonzalo Navarro and Mathieu Raffinot

� � � � � � �� �
�

�
�

� �× × × × × × ×
× ×

×
×

×
× ×

• • • • • • •◦ ◦ ◦ ◦ ◦ ◦ ◦

5 305 10 15 20 25 30

0.0

1.6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

m

� � � � � � �
� � �

�
�

� �
×

× × × × × ×

×
×

×

×
×

×
×

5 305 10 15 20 25 30

2.2

3.2

2.2

2.4

2.6

2.8

3.0

•
• • • • • •◦ ◦ ◦ ◦ ◦ ◦ ◦

5 305 10 15 20 25 30

0.0

1.0

0.0

0.2

0.4

0.6

0.8

1.0

m

� LZ77� Skip-LZ77
× Block-LZ77
× Skip-Block-LZ77

◦ LZ78• Hybrid
gunzip + Shift-Or
gunzip + BNDM

Fig. 8. Comparison of the search algorithms. The dotted line is the time taken
by gunzip alone. The left plot is for English text and the right one for DNA.

8 Conclusions

We have focused in the problem of string matching on Ziv-Lempel compressed
text. This is an important practical problem, as it is of interest keep the texts
compressed and at the same time being able to efficiently search on them.

We presented a general paradigm to search in a text that is expressed as a
sequence of blocks, which abstracts the main features of Ziv-Lempel compression.
Then, we applied the technique to the different variants, i.e. LZ77 and LZ78. For
LZ78, we are able to search in half the time of uncompressing and searching, while
for LZ77 our algorithm, although much slower, is the first one proposed to search
on LZ77 compressed text. This motivated us to present a new hybrid compression
technique which allows to search as fast as in LZ78 but which keeps many of the
features of LZ77 compression, being in practice similar in compression ratios.

Therefore, we are able to search in a compressed text faster than uncompress-
ing and then searching. In general, on the other hand, searching on compressed
text at the same speed of on uncompressed text seems difficult to achieve in
practice because of a basic problem of locality of reference.

Future work involves studying better the performance of our hybrid com-
pression, both in theory and in practice (especially on finding better methods to
encode the numbers while keeping the good search times). We also plan to work

A General Practical Approach to Pattern Matching 35

File gunzip Shift-Or LZ78 Hybrid

English 28.80 8.90 17.24 (45.7%) 16.65 (44.2%)
DNA 28.10 9.21 15.10 (40.5%) 17.27 (46.3%)
book1 18.40 4.92 10.91 (46.8%) 11.42 (49.0%)
book2 12.40 4.14 8.01 (48.4%) 7.78 (47.0%)
paper1 1.80 1.67 1.88 (54.2%) 1.92 (55.3%)
paper2 2.40 1.76 2.07 (49.8%) 2.18 (52.4%)
paper3 1.80 1.60 1.73 (50.9%) 1.88 (55.3%)
paper4 1.20 1.48 1.50 (56.0%) 1.59 (59.3%)
paper5 0.80 1.42 1.52 (68.5%) 1.54 (69.4%)
paper6 1.90 1.53 1.69 (49.3%) 1.78 (51.9%)
progc 1.50 1.55 1.73 (56.7%) 1.75 (57.4%)
progl 1.90 1.72 1.88 (51.9%) 1.84 (50.8%)
progp 1.20 1.62 1.74 (61.7%) 1.70 (60.3%)

Table 3. Search times for different files, in 1/100-th of seconds. The percentages
indicate the time of the compressed searching as a fraction of uncompressing plus
Shift-Or searching.

more in understanding the behavior of the LZ77 search algorithm. Finally, we
plan to allow for more flexible search, including features such as allowing classes
of characters and Hamming errors (some work has been already done in [26]).

This is a field where important theoretical and practical development is nec-
essary, and we have presented new results in both aspects. We hope that more
improvements are to come.

References

[1] A. Amir and G. Benson. Efficient two-dimensional compressed matching. In Proc.
Second IEEE Data Compression Conference, pages 279–288, March 1992.

[2] A. Amir, G. Benson, and M. Farach. Let sleeping files lie: Pattern matching in
Z-compressed files. Journal of Computer and System Sciences, 52(2):299–307,
1996.

[3] R. Baeza-Yates. Text retrieval: Theory and practice. In 12th IFIP World Com-
puter Congress, volume I, pages 465–476. Elsevier Science, September 1992.

[4] R. Baeza-Yates and G. Gonnet. A new approach to text searching. Communica-
tions of the ACM, 35(10):74–82, October 1992.

[5] T. Bell, J. Cleary, and I. Witten. Text Compression. Prentice Hall, New Jersey,
1990.

[6] T. Bell and D. Kulp. Longest-match string searching for Ziv-Lempel compression.
Software– Practice and Experience, 23(7):757–771, July 1993.

[7] J. Bentley, D. Sleator, R. Tarjan, and V. Wei. A locally adaptive data compression
scheme. Communications of the ACM, 29:320–330, 1986.

[8] R. S. Boyer and J. S. Moore. A fast string searching algorithm. Communications
of the ACM, 20(10):762–772, 1977.

[9] A. Czumaj, Maxime Crochemore, L. Gasieniec, S. Jarominek, Thierry Lecroq,
W. Plandowski, and W. Rytter. Speeding up two string-matching algorithms.
Algorithmica, 12:247–267, 1994.

36 Gonzalo Navarro and Mathieu Raffinot

[10] P. Elias. Universal codeword sets and representations of the integers. IEEE
Transactions on Information Theory, 21:194–203, 1975.

[11] M. Farach and M. Thorup. String matching in Lempel-Ziv compressed strings. In
27th ACM Annual Symposium on the Theory of Computing, pages 703–712, 1995.

[12] E. Fiala and D. Greene. Data compression with finite windows. Communications
of the ACM, 32(4):490–505, 4 1989.

[13] L. Gasieniec, M.Karpinksi, W.Plandowski, and W. Rytter. Efficient algorithms
for Lempel-Ziv encodings. In Proc. SWAT’96, 1996.

[14] R. N. Horspool. Practical fast searching in strings. Software Practice and Expe-
rience, 10:501–506, 1980.

[15] D. Huffman. A method for the construction of minimum-redundancy codes. Proc.
of the I.R.E., 40(9):1090–1101, 1952.

[16] J. Kärkkäinen and E. Ukkonen. Sparse suffix trees. In COCOON’96, pages 219–
230, 1996. LNCS v. 1090.

[17] M. Karpinski, A. Shinohara, and W. Rytter. Pattern matching problem for strings
with short descriptions. Nordic Journal of Computing, 4(2):172–186, 1997.

[18] T. Kida, M. Takeda, A. Shinohara, and S. Arikawa. Shift-and approach to pattern
matching in lzw compressed text. In Proc. CPM’99, 1999. To appear.

[19] D. E. Knuth, J. H. Morris, Jr, and V. R. Pratt. Fast pattern matching in strings.
SIAM Journal on Computing, 6(1):323–350, 1977.

[20] U. Manber. A text compression scheme that allows fast searching directly in the
compressed file. ACM Transactions on Information Systems, 15(2):124–136, 1997.

[21] V. Miller and M. Wegman. Variations on a theme by Ziv and Lempel. In Combi-
natorial Algorithms on Words, volume 12 of NATO ASI Series F, pages 131–140.
Springer-Verlag, 1985.

[22] A. Moffat. Word-based text compression. Software Practice and Experience,
19(2):185–198, 1989.

[23] E. Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates. Direct pattern matching
on compressed text. In Proc. SPIRE’98, pages 90–95. IEEE CS Press, 1998.

[24] E. Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates. Fast searching on com-
pressed text allowing errors. In Proc. SIGIR’98, pages 298–306. York Press, 1998.

[25] G. Navarro and M. Raffinot. A bit-parallel approach to suffix automata: Fast
extended string matching. In Proc. CPM’98, LNCS v. 1448, pages 14–33, 1998.

[26] G. Navarro and M. Raffinot. A general practical approach to pattern matching
over Ziv-Lempel compressed text. Technical Report TR/DCC-98-12, Dept. of
Computer Science, Univ. of Chile, 1998.

[27] D. Sunday. A very fast substring search algorithm. Communications of the ACM,
33(8):132–142, August 1990.

[28] T. A. Welch. A technique for high performance data compression. IEEE Computer
Magazine, 17(6):8–19, June 1984.

[29] I. Witten, R. Neal, and J. Cleary. Arithmetic coding for data compression. Com-
munications of the ACM, 30(6):520–541, 1987.

[30] M. Zipstein. Data compression with factor automata. Theor. Comput. Sci.,
92(1):213–221, 1992.

[31] J. Ziv and A. Lempel. A universal algorithm for sequential data compression.
IEEE Trans. Inf. Theory, 23:337–343, 1977.

[32] J. Ziv and A. Lempel. Compression of individual sequences via variable length
coding. IEEE Trans. Inf. Theory, 24:530–536, 1978.

Pattern Matching in Text Compressed

by Using Antidictionaries

Yusuke Shibata, Masayuki Takeda, Ayumi Shinohara, and Setsuo Arikawa

Department of Informatics, Kyushu University 33
Fukuoka 812-8581, Japan

{yusuke, takeda, ayumi, arikawa}@i.kyushu-u.ac.jp
http://www.i.kyushu-u.ac.jp

Abstract. In this paper we focus on the problem of compressed pattern
matching for the text compression using antidictionaries, which is a new
compression scheme proposed recently by Crochemore et al. (1998). We
show an algorithm which preprocesses a pattern of length m and an
antidictionary M in O(m2 + ‖M‖) time, and then scans a compressed
text of length n in O(n + r) time to find all pattern occurrences, where
‖M‖ is the total length of strings in M and r is the number of the pattern
occurrences.

1 Introduction

Compressed pattern matching is one of the most interesting topics in the com-
binatorial pattern matching, and many studies have been undertaken on this
problem for several compression methods from both theoretical and practical
viewpoints. See Table 1. One important goal of compressed pattern matching is
to achieve a linear time complexity that is proportional not to the original text
length but to the compressed text length.

Recently, Crochemore et al. proposed a new compression scheme: text com-
pression using antidictionary [8]. Contrary to the compression methods that
make use of dictionaries, which are particular sets of strings occurring in texts,
the new scheme exploits an antidictionary that is a finite set of strings that do
not occur as factors in text, i.e. that are forbidden. Let a1 . . . an ∈ {0, 1}+ be
the text to be compressed. Suppose we have read a prefix a1 . . . aj at a certain
moment. If the string ai . . . ajb (i ≤ j, b ∈ {0, 1}) is a forbidden word, namely,
is in the antidictionary, then the next symbol aj+1 cannot be b. In other words,
the next symbol aj+1 is predictable. Based on this idea, the compression method
removes such predictable symbols from the text. The compression and the de-
compression are performed by using the automaton accepting the set of strings
in which no forbidden words occur as factors.

In this paper we focus on the problem of compressed pattern matching for
the text compression using antidictionaries. We present an algorithm that solves
the problem in O(m2 + ‖M‖+ n + r) time using O(m2 + ‖M‖) space, where m
and n are the pattern length and the compressed text length, respectively, ‖M‖

M. Crochemore, M. Paterson (Eds.): CPM’99, LNCS 1645, pp. 37–49, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

38 Yusuke Shibata et al.

Table 1. Compressed pattern matching.

compression method compressed pattern matching algorithms

run-length Eilam-Tzoreff and Vishkin [11]
run-length (two dim.) Amir, Landau, and Vishkin [6]; Amir and Benson

[2,3]; Amir, Benson, and Farach [5]
LZ77 Farach and Thorup [12]; Ga̧sieniec, Karpinski,

Plandowski, and Rytter [14]
LZW Amir, Benson, and Farach [4]; Kida, Takeda, Shi-

nohara, Miyazaki, and Arikawa [17]; Kida, Takeda,
Shinohara, and Arikawa [16]

straight-line program Karpinski, Rytter, and Shinohara [15]; Miyazaki,
Shinohara, and Takeda [20]

Huffman Fukamachi, Shinohara, and Takeda [13]; Miyazaki,
Fukamachi, Takeda, and Shinohara [19]

finite state encoding Takeda [22]
word based encoding Moura, Navarro, Ziviani, and Baeza-Yates [9,10]
pattern substitution Manber [18]; Shibata, Kida, Fukamachi, Takeda,

A. Shinohara, T. Shinohara, Arikawa [21]

denotes the total length of strings in antidictionary M , and r is the number of
pattern occurrences. Since M is a part of the compressed representation of text,
the text scanning time is O(‖M‖+n+ r), which is linear in the compressed text
length ‖M‖+ n, when ignoring r. Moreover, in the case where a set of text files
share a common antidictionary [8], we can regard the O(‖M‖) time processing
of M as a preprocessing. Then the O(n + r) time text scanning will be fast in
practice. The proposed algorithm thus has desirable properties.

2 Preliminaries

Strings x, y, and z are said to be a prefix, factor, and suffix of the string u = xyz,
respectively. The sets of prefixes, factors, and suffixes of a string u are denoted
by Prefix(u), Factor(u), and Suffix(u), respectively. A prefix, factor, and suffix
of a string u is said to be proper if it is not u. The length of a string u is denoted
by |u|. The empty string is denoted by ε, that is, |ε| = 0. The ith symbol of a
string u is denoted by u[i] for 1 ≤ i ≤ |u|, and the factor of a string u that begins
at position i and ends at position j is denoted by u[i : j] for 1 ≤ i ≤ j ≤ |u|.
The reversed string of a string u is denoted by uR. The total length of strings
of a set S is denoted by ‖S‖. For strings x and y, denote by Occ(x, y) the set of
occurrences of x in y. That is,

Occ(x, y) =
{
|x| ≤ i ≤ |y|

∣∣ x = y[i− |x|+ 1 : i]
}
.

The next lemma follows from the periodicity lemma.

Lemma 1. If Occ(x, y) has more than two elements and the difference of the
maximum and the minimum elements is at most |x|, then it forms an arithmetic
progression, in which the step is the smallest period of x.

Pattern Matching in Text Compressed by Using Antidictionaries 39

~ 0 , 1

0, 1

0, 1

1 0 , 1

Fig. 1. Automaton el(M) for M {0000, 111,011,0101, 1100}. Circles and
squares denote the final and the nonfinal states, respectively. Shaded circles
denote the predict states.

3 Text Compression Using Antidictionary

In this section we describe the text compression scheme recently proposed by
Crochemore et al. [8].

3.1 M e t h o d

Let/~ {0, 1}. Suppose that 7- 6 B + be the text to be compressed. A .lbrbidden
word for T is a string u 6 / 3 + that is not a factor of T. A forbidden word is said
to be rr~inirnal if it has no proper factor that is forbidden. An antidictionaw for
T is a set of minimal forbidden words for T.

Let M be an antidictionary for T. Then the text T is in the set B* \B*MB*.
The automaton accepting the set B* \B*MB* can be built from M in O(IIMII)
time in a similar way to the construction of the Aho-Corasick pattern matching
machine [1]. We denote the automaton by

el(M) (@, B, M),

where Q Prefiz(M) is the set of states; /~ is the alphabet; ~ is the state
transition function from (2 x / 3 to (2 defined as

d(u, a) ~ u, if u 6 M;
longest string in Q S~al~fiz(ua), otherwise; [

c is the initial state; M is the set of final states. Figure 1 shows the automaton
el(M) for M {0000, 111,011, 0101, 1100}, which is an antidictionary for text
7- 11010001.

40 Yusuke Shibata et al.

The encoder and the decoder in this compression scheme are obtained di-
rectly from the automaton A(M). The encoder E(M) is a generalized sequential
machine based on A(M) with output function λ : Q×B defined by

λ(u, a) =
{

a, if Deg(u) = 2;
ε, otherwise,

where Deg(u) =
∣∣{a ∈ B|δ(u, a) 6∈ M}

∣∣. The decoder D(M) is a generalized
sequential machine obtained by swapping the input label and the output label
on each arc of the encoder E(M). Figure 2 illustrates the move of the encoder
E(M) based on A(M) of Fig. 1 which takes as input T = 11010001 and emits
110. It should be noted that, any prefix of 1101000100 with length greater than
6 is compressed into the same string 110. For a decompression we therefore need
the length of T together with the encoded string itself. Formally, the compressed
representation of T is a triple 〈M, b1 . . . bn, N〉, where M is an antidictionary,
b1 . . . bn is output from the encoder, and N is the length of T .

Let us denote by MF (T) the set of all minimal forbidden words for T . In
the case of binary alphabet we have |MF (T)| ≤ 2 · |T | − 2 as shown in [7]. To
shorten the representation size of the above triple, we need a way to build a
‘good’ antidictionary as a subset of MF (T). Crochemore et al. presented in [8] a
simple method in which antidictionary is the set of forbidden words of length at
most k, where k is a parameter. It is reported in [8] that the compression ratio
in practice is comparable to pkzip.

input: 1 1 0 1 0 0 0 1
state: 0 → 9 → 10 → 11 → 5 → 6 → 2 → 3 → 5
output: 1 1 ε ε ε ε 0 ε

Fig. 2. Move of encoder E(M) for T = 11010001.

3.2 Decoder without ε-Moves

Note that the decoder D(M) mentioned above has ε-moves. For a simple presen-
tation of our algorithm, we shall define a generalized sequential machine G(M)
obtained by eliminating the ε-moves from the decoder D(M).

Let us partition the set Q into four disjoint subsets M , Q0, Q1, and Q2 by

Qi =
{
u ∈ Q\M

∣∣ Deg(u) = i
}

(i = 0, 1, 2).

A state p in Q1 is called a predict state because of the uniqueness of outgoing
arc when ignoring the arcs into states in M . Namely, there exists exactly one
symbol a such that δ(p, a) 6∈ M . We denote such symbol a by NextSymbol(p),
and denote by NextState(p) the state δ(p, a).

Consider, for p ∈ Q1, the sequence p1, p2, . . . of states in Q1 defined by p1 = p
and pi+1 = NextState(pi) (i = 1, 2, . . .). There are two cases: One is the case that

Pattern Matching in Text Compressed by Using Antidictionaries 41

there exists an integer rn > 0 such that, for i 1, 2 , . . . , rn - 1, Pi E 01, and
p ~ E Q0 U Q2. The other is the case of no such integer rn, narnely, the sequence
continues infinitely. Let us call the sequence the predict path of p, and denote by
Terminal(p) the last state p~r~. In the infinite case, let Terminal(p) ±, where
± is a special state not in 0 . (Therefore, Ter~r~i,~al(p) ~ 00 U 02 U {±}.) The
finite/serni-infinite string spelled out by the predict pa th of p E Q1 is denoted
by Sequence(p). It is easy to see that:

L e m m a 2. For any p E Q1, there ezist u, v E t9" with I~vl < 1011 such that

Sequence(p) u v v

Now we are ready to define a generalized sequential machine G(M), where
the set of states is Q0 U Q2 U {±}; the state transition function is @ : Q2 x B --*
Q0 U Q2 u {±} defined by

f Ter~r~i~al(~(~, ~)), ~(~, ~) ~ 01;
@(u, a) [6(u, a), otherwise;

the output Nnction is %G : Q2 x B --* B + U B °O defined by

aG(u , a) { a,a" Sequence(d(u, a)), otherwise,d(u' a) E 01;

where Boo denotes the set of serni-infinite strings over B. Figure 3 shows the
decoder G(M) obtained in this way from the automaton A(M) of Fig. 1.

Decompression algorithm using G(M) is shown in Fig. 4. It should be em-
phasized that, if the decoder G(M) enters a state q and then reads a symbol a
such that %G(q, a) is serni-infinite, the symbol is the last symbol of the output
from the encoder g(M) . In this case the decoder G(M) halts after emitting an
appropriate length prefix of kG(q, a) according to the value of N.

4 M a i n R e s u l t

Generally, most of text compression methods can be recognized as mechanisms
to factorize a text into several blocks as T u l u 2 . . . u ~ and to store a se-
quence of ' representations ' of blocks ui. In the LZW compression, for example,

o1o1oo
o/o 111oo

1/10100

Fig. 3. Decoder G(M) for M {0000, 111,011, 0101, 1100}.

42 Yusuke Shibata et al.

Input. A compressed representation 〈M, b1...bn, N〉 of a text T = T [1 : N].
Output. Text T .
begin

` := 0;
q := ε;
for i := 1 to n − 1 do begin

u := λG(q, bi);
q := δG(q, bi);
` := ` + |u|;
print u

end;
u := λG(q, bn);
print the prefix of u with length N − `

end.

Fig. 4. Decompression by G(M).

the representation of a block ui is just an integer which indicates the node of
dictionary trie representing the string ui. In the case of the compression using
antidictionaries, the way of representation of block is slightly complicated.

Consider how to simulate the move of the KMP automaton for a pattern P
running on the uncompressed text T . Let δKMP : {0, 1, . . . , m}×B → {0, 1, . . . , m}
be the state transition function of the KMP automaton for P = P [1 : m]. We
extend δKMP to the domain {0, 1, . . . , m}×B∗ in the standard manner. We also
define the function λKMP on {0, 1, . . . , m} ×B∗ by

λKMP(j, u) =
{
1 ≤ i ≤ |u|

∣∣ P is a suffix of string P [1 : j] · u[1 : i]
}
.

We want to devise a pattern matching algorithm which takes as input a sequence
of representations of blocks u1, u2, . . . , un of T and reports all occurrences of P
in T in O(n + r) time, where r = |Occ(P , T)|. Then we need a mechanism for
obtaining in O(1) time the value δKMP(j, u) and a linear size representation of
the set λKMP(j, u). In the case of the LZW compression such mechanism can be
realized in O(m2+n) time using O(m2+n) space as stated in [4] and [17]. Similar
idea can also be applied to the case of text compression by antidictionaries,
except that block ui, which will be an input to the second arguments of δKMP

and λKMP, is represented in a different manner.
In our case a block ui is represented as a pair of the current state q of G(M)

and the first symbol bi of ui. Therefore we have to keep the state transitions of
G(M). An overview of our algorithm is shown in Fig. 5. The algorithm makes
G(M) run on b1 . . . bn to know inputs u1, u2, . . . , un to the KMP automaton
being simulated. Figure 6 illustrates the move of the algorithm searching the
compressed text 110 for the pattern P = 0001.

We have the following theorems which will be proved in the next section.

Pattern Matching in Text Compressed by Using Antidictionaries 43

Input. A compressed representation 〈M, b1b2...bn, N〉 of a text T = T [1 : N],
and a pattern P = P [1 : m].

Output. All positions at which P occurs in T .
begin

/* Preprocessing */

Construct the KMP automata and the suffix tries for P and PR;
Construct the automaton A(M) from M ;
Construct the predict path graph from A(M);
Perform the processing required for δG , δKMP, and λKMP (See Section 5.);

/* Text scanning */
` := 0;
q := ε;
state := 0;
for i := 1 to n − 1 do begin

u := λG(q, bi);
q := δG(q, bi);
for each p ∈ λKMP(state,u) do

Report a pattern occurrence that ends at position ` + p ;
state := δKMP(state,u);
` := ` + |u|

end;
u := λG(q, bn);
for each p ∈ λKMP(state,u) such that ` + p ≤ N do

Report a pattern occurrence that ends at position ` + p
end.

Fig. 5. Pattern matching algorithm.

Theorem 1. The function which takes as input (q, a) ∈ Q2 × B and returns
in O(1) time the value δG(q, a), can be realized in O(‖M‖) time using O(‖M‖)
space.

Theorem 2. The function which takes as input a triple (j, q, a) ∈ {0, . . . , m}×
Q2 ×B and returns in O(1) time the value

δKMP(j, u) (u = λG(q, a)),

can be realized in O(‖M‖+ m2) time using O(‖M‖+ m2) space.

Theorem 3. The function which takes as input a triple (j, q, a) ∈ {0, . . . , m}×
Q2 ×B and returns in O(1) time a linear size representation of the set

λKMP(j, u) (u = λG(q, a)),

can be realized in O(‖M‖+ m2) time using O(‖M‖+ m2) space.

Then we have the following result.

44 Yusuke Shibata et al.

input : 1 1 0
state of~(M) : 0 ~ 9 ----+ 2 ~ 2
u : 1 10100 0100
state ofKMP a u t o m a t o n : 0 ~ 0 ----+ 2 ~ 2
output: 0 0 {8}

Fig. 6. Move of pattern matching algorithm when 7- 110100010 and 7) 0001.

T h e o r e m 4. The problem of compressed pattern matching .lbr the text compres-
sion using antidictionaries can be solved in O(]]M]] + n + rn 2 + r) time using
o(11 11 + space.

5 Algorithm in Detail

This section gives a detailed presentation of the algorithm to prove Theorems 1,
2, and 3.

5.1 P r o o f o f T h e o r e m 1

For a realization of ~G, we have to find, for each q E Q0 U Q2 U {±}, the pairs
(p, b) E Q2 x B such that a(p, b) p ' E Q1 and Terminal(p') q. First of all,
we mention the graph consisting of the predict paths, which plays an important
role in this proof.

Consider the subgraph of A(M) in which the arcs are limited to the outgoing
arcs from predict nodes. We add auxiliary nodes v ~p, b) and new arcs labelled
b from v to q E Q1 such that p E Q2, b E B, and #(p,b) q to the subgraph.
We call the resulting graph predict path graph. Figure 7 shows the predict path
graph obtained from A(M) of Fig. 1.

The predict path graph illustrates, for (p, b) E Q2 x B, the string AG(p, b)
as a path which starts at the auxiliary node ~p, b), passes through nodes in Q1,
and either finally encounters a node in Q0 U Q2, or flows into a loop consisting
only of nodes in Q1. A connected component of the predict path graph falls into
two classes: (a) a tree which has as root a node in Q0 U Q2 and has as leaves

Fig. 7. Predict path graph. Rectangles denote the auxiliary nodes.

Pattern Matching in Text Compressed by Using Antidictionaries 45

(a) (b)

Fig. 8. Connected components of predict path graph.

auxiliary nodes, and (b) a loop with trees, each of which has as root a node on
the loop and has leaves auxiliary nodes. See Fig. 8.

Now we are ready to prove Theorem 1. Construction of δG is as follows: First,
we set δG(p, b) = δ(p, b) for every (p, b) ∈ Q2 × B with δ(p, b) ∈ Q0 ∪Q2. Next,
for every node q ∈ Q0 ∪Q2 of the predict path graph, we traverse the tree that
has q as root. Note that the leaves of the tree are auxiliary nodes 〈p, b〉 such
that Terminal(δ(p, b)) = q, and we can set δG(p, b) = q. Finally, for every node q
on loops of the predict path graph, we traverse the tree that has q as root. The
leaves of the tree are auxiliary nodes 〈p, b〉 such that Terminal(δ(p, b)) =⊥, and
hence we set δG(p, b) =⊥. The total time complexity is linear in the number of
nodes of the predict path graph, i.e. O(‖M‖). The proof is now complete.

5.2 Proof of Theorem 2

In the following discussions, we are frequently faced with the need to get some
value as a function of u, the strings that are spelled out by the paths from
auxiliary nodes. Even when the value for each path can be computed in time
proportional to the path length, the total time complexity is not O(‖M‖) since
more than one path can share common arcs.

Suppose that the value for each path can be computed by making an au-
tomaton run on the path in the reverse direction. Then, we can compute the
values for such paths by traversing every tree in the depth-first-order using a
stack. Since this method enables us to ‘share’ the computation for a common
suffix of two strings, the total time complexity is linear in the number of arcs,
i.e. O(‖M‖). This technique plays a key role in the following proofs.

For an integer j with 0 ≤ j ≤ m and for a factor u of P , let us denote by
N1(j, u) the largest integer k with 0 ≤ k ≤ j such that P [j − k + 1 : j] · u is a
prefix of P . Let N1(j, u) = nil, if no such integer exists. Then, we have:

δKMP(j, u) =
{

N1(j, u) + |u|, if u is a factor of P and N1(j, u) 6= nil;
δKMP(0, u), otherwise.

We assume that the second argument u of N1 is given as a node of the suffix
trie for P . Amir et al. [4] showed the following fact.

Lemma 3 (Amir et al. 1996). The function which takes as input (j, u) ∈
{0, . . . , m} × Factor(P) and returns the value N1(j, u) in O(1) time, can be re-
alized in O(m2) time using O(m2) space.

46 Yusuke Shibata et al.

We have also the next lemma.

Lemma 4. The function which takes as input (q, a) ∈ Q2 × B and returns
u = λG(q, a) as a node of the suffix trie for P when u ∈ Factor(P), can be
realized in O(‖M‖+ m2) time using O(‖M‖+ m2) space.

Proof. We use the technique mentioned above. We can ignore the infinite strings.
That is, we can ignore the trees in which a root is on a loop. Consider the problem
of determining whether uR is a factor of PR. It can be solved in O(min{|u|, m})
time using the suffix trie for PR. If uR is a factor of PR, the node u of the suffix
trie for P can be determined directly from the node uR of the suffix trie for PR

assuming a trivial one-to-one mapping between the two suffix tries, which can
be computed in O(m2) time.

Lemma 5. The function which takes as input (q, a) ∈ Q2 × B such that u =
λG(q, a) is finite and returns in O(1) time the value δKMP(0, u), can be realized
in O(‖M‖+ m) time using O(‖M‖+ m) space.

Proof. We use the technique mentioned above again. We have to consider the
problem of finding the length of longest suffix of u that is also a prefix of P . This
is equivalent to finding the length of longest prefix of uR that is also a suffix of
PR. It is solved in O(min{|u|, m}) time using the suffix tree for PR. We can
ignore the trees in which a root is on a loop.

Theorem 2 follows from the lemmas above.

5.3 Proof of Theorem 3

According to whether a pattern occurrence covers the boundary between the
strings P [1 : j] and u, we can partition the set λKMP(j, u) into two disjoint
subsets as follows.

λKMP(j, u) = λKMP(j, ũ) ∪X(u),

where
X(u) =

{
|P| ≤ i ≤ |u|

∣∣ P is a suffix of u[1 : i]
}
,

and ũ is the longest prefix of u that is also a proper suffix of P . Let

Y (j, `) = Occ
(
P ,P [1 : j] · P [m− ` + 1 : m]

)
	 j,

where 	 denotes the element-wise subtraction. It is easy to see λKMP(j, ũ) =
Y (j, |ũ|). It follows from Lemma 1 that the set Y (j, `) has the following property:

Lemma 6. If Y (j, `) has more than two elements, it forms an arithmetic pro-
gression, where the step is the smallest period of P.

Pattern Matching in Text Compressed by Using Antidictionaries 47

Lemma 7. The function which takes as input (j, `) ∈ {0, . . . , m} × {0, . . . , m}
and returns in O(1) time an O(1) space representation of the set Y (j, `), can be
realized in O(m2) time using O(m2) space.

Proof. It follows from Lemma 6 that Y (j, `) can be stored in O(1) space as a pair
of the minimum and the maximum values in it. The table storing the minimum
values of Y (j, `) for all (j, `) can be computed in O(m2) time as stated in [4].
(Table N2 defined in [4] satisfies min(Y (j, `)) = m−N2(j, `).) By reversing the
pattern P , the table the maximum values is also computed in O(m2) time. The
smallest period of P is computed in O(m) time.

Lemma 8. The function which takes as input (q, a) ∈ Q2 × B and returns in
O(1) time the value |ũ| with u = λG(q, a), can be realized in O(‖M‖ + m) time
using O(‖M‖+ m) space.

Proof. We shall consider the problem of finding the length of longest suffix of
uR that is also a proper prefix of PR. This can be solved by using the KMP
automaton for PR. But we have to consider the case where u is semi-infinite.
In the finite string case, we make the automaton start at the root of tree with
initial state. But in the infinite string case, we must change the value of the
initial state. Let v be the string spelled out by the loop starting at the root of
the tree being considered. We must pay attention to the case where a pattern
suffix is also a prefix of the string v` with ` > 0. To determine the correct value
of the initial state at the root node, we make the automaton go around the loop
exactly ` times and stop it at the root node that is the starting point, where
` is the smallest integer with ` · |v| > |P|. The state of the automaton at that
moment is the desired value.

Lemma 9. The function which takes as input (q, a) ∈ Q2 × B and returns in
O(1) time a linear size representation of the set X(u) with u = λG(q, a), can be
realized in O(‖M‖+ m) time using O(‖M‖+ m) space.

Proof. By using the KMP automaton for the reversed pattern, we mark the
predict nodes at which the pattern begins. Suppose that every predict node
has a pointer to the nearest proper ancestor that is marked. Such pointers are
realized using O(‖M‖) time and space. This enables us to get the elements of
X(u) in O(|X(u)|) time.

Theorem 3 follows from the lemmas above.

6 Concluding Remarks

In this paper we focused on the problem of compressed pattern matching for
the text compression using antidictionaries proposed recently Crochemore et al.
[8]. We presented an algorithm which has a linear time complexity proportional

48 Yusuke Shibata et al.

to the compressed text length, when we exclude the pattern preprocessing. We
are now implementing the algorithm to evaluate its performance from practical
viewpoints. In [16] we showed that the Shift-And approach is effective in the
compressed pattern matching for the LZW compression. We think that the Shift-
And approach will be substituted for the KMP automaton approach presented
in this paper and show a good performace in practice when the pattern length
m is not so large, say m ≤ 32.

For a long pattern we can also consider the following method. Let k be
the length of the longest forbidden word in the antidictionary. By using the
syncronizing property [8], we obtain:

Lemma 10. If |P| ≥ k − 1, then δ(u,P) = δ(ε,P) for any state u in Q such
that δ(u,P) 6∈ M .

Let p = δ(ε,P). Since p ∈ M implies that P cannot occur in T , we can assume
p 6∈ M . If p is in Q1, then let q = Terminal(p). Otherwise, let q = p. We can
monitor whether the state of A(M) is in state p by using the function δG to
check G(M) is in state q. If so, we shall confirm it. Our preliminary experiments
suggest that this search method is efficient in practice.

References

1. A. V. Aho and M. Corasick. Efficient string matching: An aid to bibliographic
search. Comm. ACM, 18(6):333–340, 1975.

2. A. Amir and G. Benson. Efficient two-dimensional compressed matching. In Proc.
Data Compression Conference’92, page 279, 1992.

3. A. Amir and G. Benson. Two-dimensional periodicity and its application. In Proc.
3rd Ann. ACM-SIAM Symp. on Discrete Algorithms, pages 440–452, 1992.

4. A. Amir, G. Benson, and M. Farach. Let sleeping files lie: Pattern matching in
Z-compressed files. Journal of Computer and System Sciences, 52:299–307, 1996.

5. A. Amir, G. Benson, and M. Farach. Optimal two-dimensional compressed match-
ing. Journal of Algorithms, 24(2):354–379, 1997.

6. A. Amir, G. M. Landau, and U. Vishkin. Efficient pattern matching with scaling.
Journal of Algorithms, 13(1):2–32, 1992.

7. M. Crochemore, F. Mignosi, and A. Restivo. Minimal forbidden words and factor
automata. In L. Brim, J. Gruska, and J. Zlatuska, editors, Proc. 23rd Internationial
Symp. on Mathematical Foundations of Computer Science, volume 1450 of Lecture
Notes in Computer Science, pages 665–673. Springer-Verlag, 1998.

8. M. Crochemore, F. Mignosi, A. Restivo, and S. Salemi. Text compression using
antidictionaries. Technical Report IGM-98-10, Institut Gaspard-Monge, 1998.

9. E. S. de Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates. Direct pattern match-
ing on compressed text. In Proc. 5th International Symp. on String Processing and
Information Retrieval, pages 90–95. IEEE Computer Society, 1998.

10. E. S. de Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates. Fast sequencial
searching on compressed texts allowing errors. In Proc. 21st Ann. International
ACM SIGIR Conference on Research and Development in Information Retrieval,
pages 298–306. York Press, 1998.

11. T. Eilam-Tzoreff and U. Vishkin. Matching patterns in strings subject to multi-
linear transformations. Theoretical Computer Science, 60(3):231–254, 1988.

Pattern Matching in Text Compressed by Using Antidictionaries 49

12. M. Farach and M. Thorup. String-matching in Lempel-Ziv compressed strings. In
Proc. 27th Ann. ACM Symp. on Theory of Computing, pages 703–713, 1995.

13. S. Fukamachi, T. Shinohara, and M. Takeda. String pattern matching for com-
pressed data using variable length codes. Submitted, 1998.

14. L. Ga̧sieniec, M. Karpinski, W. Plandowski, and W. Rytter. Efficient algorithms
for Lempel-Ziv encoding. In Proc. 4th Scandinavian Workshop on Algorithm The-
ory, volume 1097 of Lecture Notes in Computer Science, pages 392–403. Springer-
Verlag, 1996.

15. M. Karpinski, W. Rytter, and A. Shinohara. An efficient pattern-matching algo-
rithm for strings with short descriptions. Nordic Journal of Computing, 4:172–186,
1997.

16. T. Kida, M. Takeda, A. Shinohara, and S. Arikawa. Shift-And approach to pattern
matching in LZW compressed text. In Proc. 10th Ann. Symp. on Combinatorial
Pattern Matching, Lecture Notes in Computer Science. Springer-Verlag, 1999. to
appear.

17. T. Kida, M. Takeda, A. Shinohara, M. Miyazaki, and S. Arikawa. Multiple pattern
matching in LZW compressed text. In Proc. Data Compression Conference ’98,
pages 103–112. IEEE Computer Society, 1998.

18. U. Manber. A text compression scheme that allows fast searching directly in
the compressed file. In Proc. 5th Ann. Symp. on Combinatorial Pattern Matching,
volume 807 of Lecture Notes in Computer Science, pages 113–124. Springer-Verlag,
1994.

19. M. Miyazaki, S. Fukamachi, M. Takeda, and T. Shinohara. Speeding up the pattern
matching machine for compressed texts. Transactions of Information Processing
Society of Japan, 39(9):2638–2648, 1998. (in Japanese).

20. M. Miyazaki, A. Shinohara, and M. Takeda. An improved pattern matching al-
gorithm for strings in terms of straight-line programs. In Proc. 8th Ann. Symp.
on Combinatorial Pattern Matching, volume 1264 of Lecture Notes in Computer
Science, pages 1–11. Springer-Verlag, 1997.

21. Y. Shibata, T. Kida, S. Fukamachi, M. Takeda, A. Shinohara, T. Shinohara, and
S. Arikawa. Byte pair encoding: a text compression scheme that accelerates pattern
matching. Technical Report DOI-TR-161, Department of Informatics, Kyushu
University, April 1999.

22. M. Takeda. Pattern matching machine for text compressed using finite state model.
Technical Report DOI-TR-142, Department of Informatics, Kyushu University,
October 1997.

On the Structure of Syntenic Distance

David Liben-Nowell

Department of Computer Science
Cornell University

Ithaca, NY 14853 USA
dln@cs.cornell.edu

Abstract. This paper examines some of the rich structure of the syn-
tenic distance model of evolutionary distance, introduced by Ferretti,
Nadeau, and Sankoff. The syntenic distance between two genomes is
the minimum number of fissions, fusions, and translocations required to
transform one into the other, ignoring gene order within chromosomes.
We prove that the previously unanalyzed algorithm given by Ferretti
et al is a 2-approximation and no better, and that, further, it always
outperforms the algorithm presented by DasGupta, Jiang, Kannan, Li,
and Sweedyk. We also prove the same results for an improved version
of the Ferretti et al algorithm. We then prove a number of properties
which give insight into the structure of optimal move sequences. We give
instances in which any move sequence working solely within connected
components is nearly twice optimal, and a general lower bound based
on the spread of genes from each chromosome. We then prove a mono-
tonicity property for the syntenic distance, and bound the difficulty of
the hardest instance of any given size. We briefly discuss the results of
implementing these algorithms and testing them on real synteny data.

1 Introduction

Numerous models for measuring the evolutionary distance between two species
have been proposed in the past. These models are often based upon high-level
(non-point) mutations which rearrange the order of genes within a chromosome.
The distance between two genomes (or chromosomes) is defined as the minimum
number of moves of a certain type required to transform the first into the second.
A move for the reversal distance [1] is the replacement of a segment of a chromo-
some by the same segment in reversed order. For the transposition distance [2],
a legal move consists of removing a segment of a chromosome and reinserting it
at some other location in the chromosome.

In [6], Ferretti, Nadeau, and Sankoff propose a somewhat different sort of
measure of genetic distance, known as syntenic distance. This model abstracts
away from the order of the genes within chromosomes, and handles each chro-
mosome as an unordered set of genes. The legal moves are fusions, in which
two chromosomes join into one, fissions, in which one chromosome splits into
two, and reciprocal translocations, in which two chromosomes exchange sets of
genes. In practice, the order of genes within chromosomes is often unknown,

M. Crochemore, M. Paterson (Eds.): CPM’99, LNCS 1645, pp. 50–65, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

On the Structure of Syntenic Distance 51

and this model allows the computation of the distance between species regard-
less. Additional justification follows from the observation that interchromosomal
evolutionary events occur with relative rarity with respect to intrachromosomal
events. (For some discussion of this and related models, see [5, 8].)

Ferretti et al propose using synteny as a measure of the distance between
genomes, and present a heuristic to approximate this distance. Although they
give some experimental data on its performance, no formal analysis of this ap-
proximation algorithm is given. Identifying a performance guarantee for this
algorithm has remained an open question since.

In [3], DasGupta, Jiang, Kannan, Li, and Sweedyk show a number of re-
sults on the syntenic distance problem. They prove that computing the syntenic
distance between genomes is NP-hard, and provide a simple polynomial-time
2-approximation. They also prove a number of other useful structural results.

Our results. As with many NP-complete problems, reasoning about the syntenic
distance is difficult. We are able, however, to show some results on the struc-
ture of the problem, and analyze previously unanalyzed heuristics, including the
original algorithm of Ferretti et al. These results give interesting insight into
the rich structure of optimal move sequences. The structural properties aid in
reasoning about the syntenic distance, and may lead to improved approximation
algorithms.

Using results from [3], we prove a general lower bound for the syntenic dis-
tance between two genomes. Roughly, if for many chromosomes c in one genome,
genes from c appear in many of the chromosomes of the other genome, then the
instance is hard to solve. This lower bound may be helpful in developing im-
proved approximation algorithms, since it implies that for the class of instances
in which this scattering occurs, previously proposed algorithms are less than a
factor of 2 away from optimal.

We prove a monotonicity theory for syntenic distance, showing a natural or-
dering on the difficulty of problem instances. We define the syntenic diameter of
order n Dy(n) (in the spirit of the reversal and transposition diameters [7]) as
the maximum number of moves required to solve an instance of size n. Mono-
tonicity identifies a worst instance of size n, and implies that Dy(n) is exactly
the number of moves required to solve this instance. We prove that this worst
instance requires between 2n− 3 − log4/3(2n− 3) and 2n− 3 moves, using our
lower bound. We leave open the question of providing tighter bounds on this
distance, though we conjecture that the minimum number of moves required to
solve this instance is exactly 2n− 3.

Instance-by-instance comparison of two heuristics is a valuable notion that is
rarely explored. This type of analysis leads to very strong results in comparing
the performance of two approximation algorithms, even those with the same
approximation ratio. Using this technique, we analyze the previously unanalyzed
approximation algorithm given by Ferretti et al, settling the open question of
finding a performance guarantee for this algorithm. We prove that this algorithm
is never worse than the approximation algorithm presented by DasGupta et al

52 David Liben-Nowell

in [3], immediately giving a performance guarantee of 2. We also show that there
are instances in which the algorithm performs 2− ε away from optimal.

We also consider the algorithm resulting from making the fixes necessary to
handle the instances in which the original algorithm performs 2− ε away from
optimal. We prove the same results about this modified algorithm: it is also a
2-approximation that always outperforms the DasGupta et al algorithm, and
there are instances in which it performs a factor of 2− ε away from optimal.

Call the connected components of an instance the connected components
of the intersection graph of the chromosomes. We prove the surprising result
that there are instances in which the optimal move sequence must connect two
unconnected components, and any move sequence that fails to do so is in fact
2 − ε away from optimal. This implies that any approximation algorithm that
works only with components (as all currently proposed algorithms do) is doomed
to be no better than a 2-approximation. This raises the new problem of connected
synteny, in which the move sequence is constrained to work only within connected
components. The above results indicate that the algorithms presented in [3]
and [6] (and the modified version of the latter) are only 2-approximations for
connected synteny, as well.

We also discuss a preliminary implementation of the syntenic distance model
and all of the algorithms discussed above. We discuss the results of running all
three algorithms on eight sets of real synteny data from the Institut National de
la Recherche Agronomique (INRA) Comparative Homology Database [4].

2 Notational Preliminaries and Previous Heuristics

The syntenic distance model is as follows: a chromosome is a subset of a set
of n genes, and a genome is a collection of k chromosomes. A genome can be
transformed by any of the following moves (for S, T , U , and V non-empty sets
of genes): (1) a fusion (S, T) −→ U , where U = S∪T ; (2) a fission S −→ (T, U),
where T ∪U = S; or (3) a translocation (S, T) −→ (U, V), where U ∪V = S ∪T .
The syntenic distance between genomes G1 and G2 is then given by the minimum
number of moves required to transform G1 into G2.

The compact representation of an instance of synteny is described in [6] and
formalized in [3]. This representation makes the goal of each instance uniform
and thus eases reasoning about move sequences. For an instance in which we
are attempting to transform genome G1 into genome G2, we relabel each gene a
contained in a chromosome of G1 by the numbers of the chromosomes of G2 in
which a appears. Formally, we replace each of the k sets S in G1 with

⋃
`∈S{i | ` ∈

Gi} (where G2 = G1, G2, . . . , Gn) and attempt to transform these sets into the
collection {1}, {2}, . . . , {n}. As an example of the compact representation (given
in [6]), consider the instance

G1 = {x, y}, (Chromosome 1)
{p, q, r}, (Chromosome 2)
{a, b, c} (Chromosome 3)

G2 = {p, q, x}, (Chromosome 1)
{a, b, r, y, z} (Chromosome 2).

On the Structure of Syntenic Distance 53

The compact representation of G1 with respect to G2 is {1, 2}, {1, 2}, {2} and
the compact representation of G2 with respect to G1 is {1, 2}, {1, 2, 3}. For an
instance of synteny in this compact notation, we will write S(n, k) to refer to the
instance where there are n elements and k sets in the compact representation.
Let D(S(n, k)) be the minimum number of moves required to solve a synteny
instance S(n, k).

We will say that two sets S1 and S2 are connected if S1 ∩ S2 6= ∅, and that
both are in the same component. For a gene `, let count(`) be the number of
chromosomes in which ` appears.

In [6], Ferretti et al present the approximation algorithm reproduced in Fig. 1,
which we denote by F . (Two genes are syntenic iff they appear in the same
chromosome.) Although they provide some empirical evidence on the algorithm’s
performance, they do not give any formal analysis.

Select an uneliminated gene ` to work on, under the following priorities:

Priority (A). Any ` for which count(`) = 1.

Priority (B). Any ` for which count(`) = 2.

Priority (C). If all count(`) > 2, pick ` which minimizes count(`) and, if there are
several such, which minimizes count(`′) for some `′ in the chromosome remaining
from the last operation involving `. If there are several such, choose ` so that
after it is operated on,

∑
`
count(`) is minimized.

For the ` selected above, do one of the following operations:

Operation (1). If count(`) = 1 and some of the genes syntenic with ` appear in
no other chromosomes, effect a fission to create a separate chromosome {`}.

Operation (2). If count(`) = 1 and all genes `′ syntenic with ` appear in
count(`′) ≥ cmin > 1 chromosomes, effect a translocation to obtain a separate
chromosome {`}. The second chromosome involved in the translocation is one
that contains some gene `′ syntenic with `, with count(`′) = cmin, and, if there
are several, with a maximal number of genes syntenic with `.

Operation (3). If count(`) > 1, effect count(`)−2 fusions followed by one translo-
cationa, again to produce a separate {`}.

a This translocation could actually be a fusion if no other genes are present in the
component.

Fig. 1. The approximation algorithm F [6].

Let H denote the approximation algorithm defined in [3]: for each con-
nected component containing ni elements and ki sets, perform ki − 1 fusions
to produce one set with all ni elements, then ni − 1 fissions to produce the
ni singletons. Thus in an instance with p components, H requires n + k − 2p
moves. DasGupta et al show that this algorithm is a 2-approximation, a tight
bound (the algorithm performs a factor of 2 away from optimal on the instance
{1}, {1, 2}, . . . , {1, 2, . . . , n}). To derive the performance guarantee for H, Das-

54 David Liben-Nowell

Gupta et al prove the following component bound : if an instance of synteny
S(n, k) has p components, then D(S(n, k)) ≥ n− p.

3 An Analysis of F
In this section, we prove a number of results about F . We first show that F is
never worse than H, and is therefore a 2-approximation. We then show that the
factor of 2 is tight by giving a class of instances in which F performs a factor of
2 away from optimal. (In Sect. 4, we give a modification of F that handles this
class of instances optimally, and analyze the modified algorithm.)

Theorem 1. For any instance S(n, k) of synteny, |F(S(n, k))| ≤ |H(S(n, k))|.

Proof. Suppose that F generates a move sequence σ on S(n, k). Suppose that in
σ there are m1 fissions (from Operation (1)), m2 translocations (from Operations
(2) and (3)), and m3 fusions (from Operation (3)).

Every translocation generated by Operation (2) is of the form (S∪{`}, T) −→
(S∪T, {`}) where ` /∈ S∪T and, for some gene `′, `′ ∈ S∩T . Every translocation
generated by Operation (3) is of the form (S ∪ {`}, T ∪ {`}) −→ (S ∪ T, {`})
where ` /∈ S ∪ T . Note that in either case, at the time that {`} is produced, it
appears nowhere else in the genome (i.e., count(`) = 1).

We create a new move sequence σ′ which differs from σ in that each translo-
cation (S1 ∪ S2, T1 ∪ T2) −→ (S1 ∪ T1, S2 ∪ T2) is replaced by the two-move
sequence (S1 ∪ S2, T1 ∪ T2) −→ S1 ∪ S2 ∪ T1 ∪ T2 −→ (S1 ∪ T1, S2 ∪ T2).

By the form of the translocations and this translation, we have the following
facts:

– Each of the newly-created fusions is within a connected component (the
input sets are connected by `′ for Operation (2) and ` for Operation (3)).

– Each of the newly-created fissions produces a singleton {`} for a gene ` that
appears nowhere else in the genome.

Now we examine the fusions and fissions in σ. Each original fusion (from
Operation (3)) is also within a component (the two input sets are connected
by `), and each fission (in Operation (1)) produces a singleton of a gene that
appears nowhere else in the genome. Thus, every fusion in σ′ fuses two sets in
the same component, and every fission in σ′ produces a singleton set with an
element that appears nowhere else in the genome.

Clearly we can rearrange σ′ to completely solve each component before begin-
ning the next, since there are no intercomponent dependencies. Further, inside
each component we can put all the fusions before all the fissions, since the fis-
sions merely remove the last instance of an element from a larger set. In other
words, after rearrangement, σ′ does exactly what H does: within each compo-
nent, it fuses all the sets into one massive set, and then fissions off individual
elements one at a time. Note that |σ′| = m1 + 2 · m2 + m3 = m2 + |σ|, and
thus |σ| = |σ′| −m2 = |H(S(n, k))| −m2. In other words, F performs m2 moves
better than H on each input. ut

On the Structure of Syntenic Distance 55

Corollary 2. F is a 2-approximation.

Proof. Immediate from Theorem 1 and the fact that H is a 2-approximation. ut

We now show the corresponding lower bound for F :

Lemma 3. For any ε > 0, there exists an instance S(n, k) with |F(S(n, k))| ≥
(2− ε) ·D(S(n, k)).

Proof. Select any n such that 1/(n− 1) ≤ ε. We give a synteny instance S(n, n)
such that D(S(n, n)) = n−1 and |F(S(n, n))| = 2n−3. Then the ratio between
the result of F and the optimal is (2(n − 1) − 1)/(n − 1), i.e., only 1/(n − 1)
better than two times optimal.

The instance S(n, n) consists of {1, 2, . . . , n} and n − 1 copies of {n}. Here
is an n− 1 move sequence solving the instance:

[n− 1 moves] For i = 1 to n− 1, translocate the ith singleton {n}
with the remaining elements of the large set to pro-
duce the singleton {i}.

Each move removes one of the n − 1 genes appearing only in the large set
while absorbing another of the singleton {n} sets, so that after n − 1 of these
moves all the ns have been joined.

Now, we examine what F does on this input. Genes 1, 2, . . . , n−1 are exactly
symmetric in this instance, so we assume without loss of generality that F selects
them in ascending order.

[n− 2 moves] For i = 1 to n − 2, count(i) = 1. The gene n − 1 is
syntenic with i and appears in no other chromosome,
so by Operation (1) we fission off the singleton {i}.
This leaves {n− 1, n} and n− 1 copies of {n}.

[1 move] count(n − 1) = 1, so select it. By Operation (2),
translocate {n − 1, n} and {n} to produce {n − 1}
and {n}. This leaves n− 1 copies of {n}.

[n− 2 moves] Fuse the n− 1 copies of {n} by Operation (3).
Thus F requires n− 2 fissions, 1 translocation, and n− 2 fusions, or 2n− 3

moves total. ut

4 A Possible Improvement to F
Note that the non-optimality of F on the instance in Lemma 3 is only as the
result of applications of Operation (1). When the applications of this operation
have been completed, the resulting genome is {n−1, n} and n−1 copies of {n}.
F takes n − 1 more moves after this point, which, by the component bound, is
optimal. The non-optimality of Operation (1) is sufficient to cause F to be a
factor of 2 away from optimal. The difficulty with F results from overzealous
applications of Operation (1) when Operation (2) could do some good. (Notice
from Theorem 1 that the more translocations F does, the better its perfor-
mance.) Call F ′ the algorithm resulting from making the following fixes to F to
deal with this problem:

56 David Liben-Nowell

– Apply Operation (1) only if all of the genes syntenic with ` appear in no
other chromosomes.

– Apply Operation (2) if any gene syntenic with ` appears in another chromo-
some. The second chromosome involved in the translocation is selected as in
F , but ignoring those genes `′ syntenic with ` such that count(`′) = 1.

Note that F ′ performs optimally on the bad instance for F in Lemma 3:
the genes are still selected in the same order, but each of the first n− 1 fissions
becomes a translocation, and the instance is solved after these translocations.

Theorem 4. For any instance S(n, k) of synteny, |F ′(S(n, k))| ≤ |H(S(n, k))|.

Proof. Analogous to the proof of Theorem 1. ut

Corollary 5. F ′ is a 2-approximation. ut

The following lemma shows, however, that F ′ is also no better than a 2-
approximation.

Lemma 6. For any ε > 0, there exists an instance S(n, k) with |F ′(S(n, k))| ≥
(2− ε) ·D(S(n, k)).

Proof. We give an instance S(αi+1, αi+i+1) with D(S(αi+1, αi+i+1)) = αi+i
and F ′(S(αi + 1, αi + i + 1)) = 2αi− 1 for 3 ≤ α < i. Selecting α ≥ 3 and i > α
so that ε ≥ (2i + 1)/(αi + i) then gives us an instance in which F ′ performs
(2− ε) away from optimal.

Consider the instance S(αi + 1, αi + i + 1) consisting of the following sets,
for 3 ≤ α < i:

– S = {1, 2, . . . , αi + 1}
– Xj,q = {j}, for 1 ≤ j ≤ i and 1 ≤ q ≤ α
– i copies of Z = {i + 1, i + 2, . . . , αi + 1}.

Here is a move sequence solving S(αi + 1, αi + i + 1) in αi + i moves:
[i− 1 moves] Fuse the i copies of Z, leaving S, the Xj,qs, and Z.
[1 move] Translocate S and Z to produce {1, 2, . . . , αi} and

{αi + 1}.
[(α− 1)i moves] Translocate (α − 1) of the singletons for each of the

genes 1, 2, . . . , i with the set {1, 2, . . . , αi} to produce
the singletons {i + 1}, {i + 2}, . . . , {αi}. This leaves
{1, 2, . . . , i} and {1}, {2}, . . . , {i}.

[i moves] For j = 1 to i−1, translocate {j} with the large set to
remove j from it. This leaves two copies of {i}. Fuse
these to solve the instance.

We now examine what F ′ does on this instance. Notice that

count(`) =
{

α + 1 for ` ∈ {1, 2, . . . , i}
i + 1 for ` ∈ {i + 1, i + 2, . . . , αi + 1}.

On the Structure of Syntenic Distance 57

Since 1, 2, . . . , i are completely symmetric in this instance, without loss of gen-
erality we assume that the algorithm picks them in ascending order. Similarly,
i + 1, i + 2, . . . , αi + 1 are symmetric, and we assume without loss of generality
that they are selected in ascending order, as well.

[α moves] α < i, so we first select ` = 1. Applying Operation
(3), we fuse all singletons {1} and then translocate
with S to produce {1} and {2, 3, . . . , αi + 1}.

[α moves] Select ` = 2. Apply Operation (3) as above to produce
{2} and {3, 4 . . . , αi + 1}.

...
...

[α moves] Select ` = i. Apply Operation (3) as above to produce
{i} and {i + 1, i + 2, . . . , αi + 1}. The only remaining
sets are i + 1 copies of the set Z.

[i moves] Select ` = i+1. Apply Operation (3) to fuse i copies of
Z, and then translocate the last two copies to produce
{i + 1} and {i + 2, i + 3, . . . , αi + 1}.

[(α− 1)i− 1 moves] Fission the remaining set {i+2, i+3, . . . , αi+1} into
singletons, by Operation (1).

F ′ thus has to complete αi + i + (α − 1)i− 1 = 2αi− 1 moves to solve this
instance. ut

Note that F does poorly on these instances, as well — bad choices of the
genes by Priority (C) are sufficient to cause the non-optimality, and F selects
genes in the same way as F ′.

5 Moves between Connected Components

It seems intuitive that when attacking an instance of synteny consisting of two
distinct connected components, the optimal move sequence would never fuse
these components together. Both H and F (and F ′) work within connected
components, in fact. However, the following theorem shows that this approach
is doomed to be no better than a 2-approximation.

Theorem 7. For any algorithm A that works only within connected compo-
nents, and for any ε > 0, there exists an instance S(n, k) where |A(S(n, k))| ≥
(2− ε) ·D(S(n, k)).

Proof. We construct an instance of synteny S(n, n) solvable in n− 1 moves, but
for which A will require 2n− 4 moves. Selecting n so that ε ≥ 2/(n− 1) yields
an instance where A is 2− ε away from optimal.

Consider the instance S(n, n) consisting of {1, 2, . . . , n− 1} and n− 1 copies
of {n}. First we observe that there is a move sequence solving this instance in
n− 1 moves:

[1 move] Translocate {1, 2, . . . , n− 1} and {n} to produce {1}
and {2, 3, . . . , n− 1, n}.

58 David Liben-Nowell

[n− 2 moves] For i = 2 through n − 1, perform a translocation of
the set {i, i + 1, . . . , n} and {n} to produce {i} and
{i + 1, i + 2, . . . , n}.

For any algorithm A working only within components, however, the moves
that A can make are severely limited. Since {1, 2, . . . , n− 1} is a component all
by itself, there is no choice but to complete n−2 fissions. The n−1 copies of {n}
also form an entire component by themselves. Thus the only possible moves are
to complete n − 2 fusions to create a unique singleton. Therefore, A completes
2n− 4 moves on this instance. ut

It is now natural to define the connected synteny problem, to find the min-
imum number of moves required to transform one genome into another with
all moves constrained to work only within a single component. We will use
D̂(S(n, k)) to denote the minimum number of moves within components required
to solve a synteny instance S(n, k).

Obviously, D̂(S(n, k)) ≥ D(S(n, k)). Because H, F , and F ′ all generate
move sequences that work within components, these algorithms are also 2-
approximations for the connected synteny problem. In each of the examples
in which these algorithms are 2 − ε away from optimal, the optimal move se-
quence works only within components. (In fact, there is only one component in
each example.) Thus H, F , and F ′ are all 2-approximations for this problem,
and no better. Whether it is easier to approximate connected synteny, however,
remains an open question.

6 Non-redundancy and Monotonicity

In this section, we show that, for any instance, there is an optimal move sequence
containing no moves that produce two sets with non-empty intersection. We also
prove a monotonicity property for syntenic distance.

We first need to introduce an extension to our notation to handle the case of
empty sets as input. If S1, . . . , Sk is a collection of sets and, for some i, Si = ∅, we
understand the synteny instance S(n, k) = S1, . . . , Sk to represent the synteny
instance T (n, k − 1) = S1, . . . , Si−1, Si+1, . . . , Sk.

Lemma 8. If there is a move sequence σ = (σ1, σ2, . . . , σm) solving S1, . . . , Si∪
{a}, . . . , Sk where a /∈ Si (with Si possibly empty), then there exists a move
sequence σ′ solving S1, . . . , Si, . . . , Sk in at most m steps.

Proof (by induction on m). For the base case (m = 1), σ1 must solve the in-
stance. We have two cases (a cannot appear in more than one additional set,
since otherwise no single move could solve the instance):

– The element a also appears in some set Sj 6=i.
σ1 must take Si ∪ {a} and Sj as input, and produce the singleton {a} as
output. Otherwise, two copies of the gene a remain, or the copy of a is
bundled up with some other element(s). This first restriction implies that σ1

cannot be a fission.

On the Structure of Syntenic Distance 59

If σ1 is the fusion (Sj , Si ∪ {a}) −→ {a}, it must be the case that Sj = {a}
and Si = ∅. Thus S1, . . . , Sk is already in the target form, and in the new
instance we are done without making any move.
If σ1 is a translocation, a must occur in only one of the output sets, for
otherwise it appears twice and the instance is not solved. Thus σ1 = (Si ∪
{a}, Sj) −→ (Si ∪ [Sj − {a}], {a}). We can replace this by σ′1 = (Si, Sj) −→
(Si ∪ [Sj − {a}], {a}) to solve the instance S1, . . . , Sk.

– a does not appear elsewhere in the genome.
Then the last move need not involve the singleton {a}. If it does not, then it
must be the case that Si = ∅. (Otherwise after the last move of the sequence
a is in a non-singleton and the instance has not been solved.) In this case,
simply doing the last move will solve S1, . . . , Sk.
If the last move does involve Si ∪ {a}, it is not a fusion since any fusing
would couple a with some other element. (a would have to be coupled with
some element b 6= a, since a does not appear elsewhere in the genome.)
If σ1 is a fission, then it must produce a singleton set {a} and some other
set not containing a in order to solve the instance. Since a /∈ Si, this means
that σ1 = Si∪{a} −→ ({a}, Si). If we replace Si∪{a} by Si in the instance,
the instance is already in the target form and we can skip this move.
If σ1 is a translocation, it must be (Sj , Si∪{a}) −→ (U, {a}) for some set U ,
or else (as with the fusion case) the instance would not be solved. If a ∈ U
then the instance is not solved, since a appears twice. Therefore it must be
the case that U = Si ∪ Sj . To solve the new instance, we can simply do the
fusion (Si, Sj) −→ Si ∪ Sj and we are done.

For the inductive case (m ≥ 2), first we handle the cases when σ1 is any
move that does not involve the set Si ∪ {a}. For ` and j distinct from i:

– σ1 = (S`, Sj) −→ S` ∪ Sj . Then σ2...m solves Sr(1 ≤ r ≤ k, r 6= `, r 6= j, r 6=
i), Si ∪ {a}, S` ∪ Sj . By the inductive hypothesis, we have a move sequence
σ′ solving Sr(1 ≤ r ≤ k, r 6= `, r 6= j, r 6= i), Si, S` ∪ Sj in at most m − 1
moves.

– σ1 = S` −→ (U, V). Then σ2...m solves Sr(1 ≤ r ≤ k, r 6= `, r 6= i), Si ∪
{a}, U, V . By the inductive hypothesis, we have a move sequence σ′ solving
Sr(1 ≤ r ≤ k, r 6= `, r 6= i), Si, U, V in at most m− 1 moves.

– σ1 = (S`, Sj) −→ (U, V). Then σ2...m solves Sr(1 ≤ r ≤ k, r 6= `, r 6= j, r 6=
i), Si ∪ {a}, U, V . By the inductive hypothesis, we have a move sequence σ′

solving Sr(1 ≤ r ≤ k, r 6= `, r 6= j, r 6= i), Si, U, V in at most m− 1 moves.

In each case, doing σ1 and σ′ solves S1, . . . , Sk in at most m moves. We now
consider the cases in which σ1 takes Si ∪ {a} as input.

– Suppose σ1 is a fission, and that Si = Si1 ∪ Si2 .
If σ1 = Si ∪ {a} −→ (Si1 ∪ {a}, Si2), then σ2...m solves the instance Sr(1 ≤
r ≤ k, r 6= i), Si1 ∪{a}, Si2 . By the inductive hypothesis, there is a σ′ solving
Sr(1 ≤ r ≤ k, r 6= i), Si1 , Si2 in at most m − 1 steps. Then doing Si −→
(Si1 , Si2) followed by σ′ solves S1, . . . , Sk in at most m steps.

60 David Liben-Nowell

If σ1 = Si ∪ {a} −→ (Si1 ∪ {a}, Si2 ∪ {a}), then σ2...m solves the instance
Sr(1 ≤ r ≤ k, r 6= i), Si1 ∪ {a}, Si2 ∪ {a} in m − 1 moves. By the inductive
hypothesis applied to σ2...m and Si1 ∪ {a}, there is a σ′ solving Sr(1 ≤
r ≤ k, r 6= i), Si1 , Si2 ∪ {a} in at most m − 1 steps. Applying the inductive
hypothesis again, this time to σ′ and Si2 ∪ {a}, we have that there is a σ′′

solving Sr(1 ≤ r ≤ k, r 6= i), Si1 , Si2 in at most m − 1 steps. Then doing
Si −→ (Si1 , Si2) followed by σ′′ solves S1, . . . , Sk in at most m steps.

– Suppose that σ1 is the fusion (Si ∪ {a}, S`) −→ Si ∪ {a} ∪ S`. Then σ2...m

solves the instance Sr(1 ≤ r ≤ m, r 6= `, r 6= i), Si ∪ {a} ∪ S` in m− 1 steps.
If a ∈ S`, then Si ∪ {a}∪S` = Si ∪S`. Thus σ2...m solves Sr(1 ≤ r ≤ m, r 6=
`, r 6= i), Si ∪ S`, and doing (Si, S`) −→ Si ∪ S` and σ2...m solves S1, . . . , Sk

in m steps.
If a /∈ S`, then by the inductive hypothesis, there is a σ′ solving Sr(1 ≤ r ≤
m, r 6= `, r 6= i), Si ∪ S` in m− 1 steps. To solve S1, . . . , Sk, we do the fusion
(Si, S`) −→ Si ∪ S` and run σ′, which requires at most m steps.

– Suppose σ1 is a translocation using the set Si ∪ {a} and S`, where Si =
Si1 ∪ Si2 and S` = S`1 ∪ S`2 . Then σ1 must look like one of the following:

(1) (S`, Si ∪ {a}) −→ (S`1 ∪ Si1 , S`2 ∪ Si2 ∪ {a})
(2) (S`, Si ∪ {a}) −→ (S`1 ∪ Si1 ∪ {a}, S`2 ∪ Si2 ∪ {a}).

In either case we replace this move by the translocation σ′1 = (S`, Si) −→
(S`1 ∪ Si1 , S`2 ∪ Si2).
In case (1), if a ∈ S`2 , then σ2...m solves Sr(1 ≤ r ≤ k, r 6= `, r 6= i), S`1 ∪
Si1 , S`2 ∪ Si2 in m− 1 steps, since S`2 ∪ Si2 ∪ {a} = S`2 ∪ Si2 . Then we can
do σ′1 and σ2...m to solve S1, . . . , Sk in m steps.
If a /∈ S`2 , then σ2...m solves Sr(1 ≤ r ≤ k, r 6= `, r 6= i), S`1 ∪Si1 , S`2 ∪Si2 ∪
{a} in m − 1 steps. By the inductive hypothesis, there is a move sequence
σ′ solving Sr(1 ≤ r ≤ k, r 6= `, r 6= i), S`1 ∪ Si1 , S`2 ∪ Si2 in at most m − 1
steps. Gluing this together with σ′1 yields a sequence solving S1, . . . , Sk in at
most m moves.
In case (2), if a ∈ S`1 then S`1 ∪ Si1 ∪ {a} = S`1 ∪ Si1 and this move is
actually (S`, Si ∪ {a}) −→ (S`1 ∪ Si1 , S`2 ∪ Si2 ∪ {a}), which is exactly case
(1). Otherwise, a /∈ S`1 . If a ∈ S`2 , for exactly the same reason as above
(with the roles of S`1 and S`2 reversed), we are again in case (1). Thus the
only interesting case is when a /∈ S`1 and a /∈ S`2 .
In this case, σ2...m solves Sr(1 ≤ r ≤ k, r 6= `, r 6= i), S`1 ∪ Si1 ∪ {a}, S`2 ∪
Si2 ∪ {a} in m− 1 moves. By the inductive hypothesis applied to σ2...m and
S`1 ∪ Si1 ∪ {a}, we have a move sequence σ′ solving Sr(1 ≤ r ≤ k, r 6= `, r 6=
i), S`1 ∪ Si1 , S`2 ∪ Si2 ∪ {a} in at most m− 1 moves. Applying the inductive
hypothesis again, to σ′ and S`2 ∪ Si2 ∪ {a}, we have a move sequence σ′′

solving Sr(1 ≤ r ≤ k, r 6= `, r 6= i), S`1 ∪ Si1 , S`2 ∪ Si2 in at most m − 1
moves. This is exactly the result of doing the translocation σ′1, so doing σ′1
and σ′′ solves S1, . . . , Sk in at most m moves. ut
Define a redundant move as any move creating two sets S and T such that

S∩T 6= ∅. (Note that only fissions and translocations can be redundant, because
fusions do not create two sets.)

On the Structure of Syntenic Distance 61

We need the following result on reordering from [3] to prove a theorem on
redundancy: for S(n, k) an instance of synteny and σ = (σ1, . . . , σm) any move
solving the instance with m1 fusions, m2 translocations, and m3 fissions, there
exists a move sequence σ′ solving the instance in m′ ≤ m moves in which every
fusion precedes every translocation precedes every fission, using m′

1 ≤ m1 fu-
sions, m′

2 ≤ m2 translocations, and m′
3 ≤ m3 fissions. (DasGupta et al actually

state this lemma for the case where σ is optimal, but the proof extends to a
general σ straightforwardly.) We refer to a move sequence in which the fusions
precede the translocations precede the fissions as in canonical order.

Theorem 9. For any synteny instance S(n, k), there exists an optimal move
sequence making no redundant moves.

Proof. Let σ = (σ1, . . . , σm) be a canonically-ordered optimal move sequence
solving S(n, k). There are no redundant fusions at all (by the definition of a
redundant move). Any redundant fission must yield two copies of at least one
gene a, say S1 ∪S2 ∪{a} −→ (S1 ∪{a}, S2 ∪{a}). But then there are two copies
of the gene a, and since all succeeding moves are also fissions, the number of as
can only increase, and therefore the instance will not be solved.

Then the only possible redundant moves are translocations of the form (T1 ∪
T2∪V, U1∪U2 ∪W) −→ (T1∪U1∪V ∪W, T2∪U2∪V ∪W) for some non-empty
overlap V ∪W , with V ∩(T1∪T2) = ∅ and W ∩(U1∪U2) = ∅. Then by repeatedly
applying the transformation described in Lemma 8 to σ for every element of
V ∪W , we can solve the instance resulting from replacing this redundant move
by the translocation (T1 ∪T2 ∪V, U1 ∪U2 ∪W) −→ (T1 ∪U1 ∪V ∪W, T2 ∪U2) in
at most as many moves. Repeating this sequentially for every redundant move
in σ yields a move sequence of length at most m with no redundant moves. ut

Note that the canonicalizing process does not create redundancies: with a
non-redundant move sequence as input, it produces a non-redundant canonical
move sequence as output. Thus we can convert any move sequence σ into a non-
redundant canonical move sequence by consecutively applying canonicalization,
redundancy elimination, and canonicalization again.

Theorem 10 (Monotonicity). Let S1, . . . , Sk and T1, . . . , Tk be two collec-
tions of sets where, for all 1 ≤ i ≤ k, Ti ⊆ Si. Let n = |

⋃
i Si| and n′ = |

⋃
i Ti|.

Let S(n, k) = S1, . . . , Sk and let T (n′, k) = T1, . . . , Tk. Then D(S(n, k)) ≥
D(T (n′, k)).

Proof (by induction on δ =
∑

i |Si − Ti|).
Base case (δ = 0). Then each Si = Ti, and T (n′, k) = S(n, k), so their

distances are trivially equal.
Inductive case (δ ≥ 1). Let σ = (σ1, σ2, . . . , σm) be an optimal move sequence

solving S(n, k). Let j be the minimum index such that Sj ⊃ Tj and let a be any
element in Sj − Tj . By applying the transformation described in Lemma 8, we
can convert σ into a σ′ solving S1, S2, . . . , Sj − {a}, . . . , Sk in at most m steps.
This instance is one element “closer” to T (n′, k), so, by the inductive hypothesis,
we can solve T (n′, k) in at most m steps. ut

62 David Liben-Nowell

7 A Lower Bound on Synteny

In this section, we give a lower bound on syntenic distance when many elements
appear in many sets. The intuition for the bound is the following: suppose that,
in the compact representation, many genes appear in many chromosomes. This
occurs exactly when, in the non-compact representation, for many chromosomes
c in genome G1, genes from c appear in many of the chromosomes in genome G2.
This can only occur if many evolutionary events “scattered” c from G1 to G2. If
this occurs for many chromosomes c, then many events must have occurred for
many chromosomes, and thus the distance between the genomes must be large.

To prove this lower bound, we need the following restricted form of the syn-
teny problem, defined in [3]. Define the linear synteny problem as the synteny
problem in which all move sequences are constrained as follows:

– The first k − 1 moves must be fusions or severely restricted translocations.
One of the input sets is initially designated as the merging set. Each of the
first k − 1 moves takes the current merging set ∆ as input, along with one
unused input set S, and produces a new merging set ∆′. If some element
a appears nowhere in the genome except in ∆ and S, then the move is the
translocation (∆, S) −→ (∆′, {a}), where ∆′ = (∆ ∪ S) − {a}. If there is
no such element a, then the move simply fuses the two sets: (∆, S) −→ ∆′,
where ∆′ = ∆ ∪ S.

– If ∆ is the merging set after the k − 1 fusions and translocations, then each
of the next |∆| − 1 moves simply fissions off a singleton {a} and produces
the new merging set ∆′ = ∆− {a}.

Let D̃(S(n, k)) be the length of the optimal linear move sequence. Note that
if a linear move sequence performs m1 fusions in the first k− 1 moves, then the
move sequence contains k −m1 − 1 translocations. After the k − 1 fusions and
translocations are complete, there are n−k+m1 +1 elements left in the merging
set, since exactly one element is eliminated by each translocation. Therefore,
n − k + m1 fissions must be performed to eliminate the remaining elements.
Thus the length of the linear move sequence is n + m1 − 1 moves. (Every move
either is a fusion or removes one element, and all but the last element must be
removed.)

Theorem 11. For any instance of synteny S(n, k),

D̃(S(n, k)) ≥ n− 1 + max
1≤c≤k−1

[
c−

∣∣∣{` | count(`) ≤ c + 1
}∣∣∣].

Proof. Consider an arbitrary c between 1 and k−1, and consider any linear move
sequence solving S(n, k). In the first c moves, only genes ` such that count(`) ≤
c+1 can be eliminated. (Any ` with count(`) > c+1 remains present in at least
one unused input set, since the first c moves can only merge c + 1 sets.)

Thus, in the first c moves we have at most
∣∣∣{` | count(`) ≤ c + 1

}∣∣∣ transloca-
tions, and therefore at least c−

∣∣∣{` | count(`) ≤ c + 1
}∣∣∣ fusions. Thus the instance

requires at least n− 1 + c−
∣∣∣{` | count(`) ≤ c + 1

}∣∣∣ moves to solve. ut

On the Structure of Syntenic Distance 63

DasGupta et al prove that for any instance S(n, k) of synteny, D̃(S(n, k)) ≤
D(S(n, k)) + logb D(S(n, k)), for some constant b. (In the full version of their
paper, DasGupta et al show that we can take b = 4/3.) This gives us the following
bound on the general synteny problem:

Corollary 12. For any instance of synteny S(n, k),

D(S(n, k)) + log4/3(D(S(n, k)))

≥ n− 1 + max
1≤c≤k−1

[
c−

∣∣∣{` | count(`) ≤ c + 1
}∣∣∣].

ut

This bound may help in the development of improved approximation algo-
rithms for the (linear) synteny problem. In particular, for a significant class of
instances, H is better than a factor of 2 away from the linear optimal solution:

Corollary 13. For any instance S(n, k) of synteny in which n ≥ k, if there
exists some c such that c−

∣∣∣{` | count(`) ≤ c + 1
}∣∣∣ ≥ βn + 1 for β ∈ (0, 1], then

|H(S(n, k))|
D̃(S(n, k))

<
2

β + 1
.

Proof. Suppose that S(n, k) has p components. Then

|H(S(n, k))|
D̃(S(n, k))

≤ n + k − 2p

n− 1 + βn + 1
≤ 2n− 2p

(1 + β)n
<

2n

(1 + β)n
=

2
1 + β

.

ut

8 Syntenic Diameter

In this section, we consider the notion of the hardest instance of a given size,
and give bounds on how hard it is. We define the syntenic diameter of order n
as

Dy(n) def= max
S(n,n)

D(S(n, n)),

the number of moves required to solve the worst instance of up to n elements
and n sets. We also define the complete n-instance Kn(n, n) of synteny, which
consists of n copies of the set {1, . . . , n}.

Lemma 14. Dy(n) = D(Kn(n, n)).

Proof. Immediate from monotonicity. ut

Lemma 15. D̃(Kn(n, n)) = 2n− 3.

64 David Liben-Nowell

Proof. All genes appear n times, so

n− 2−
∣∣∣{` | count(`) ≤ n− 1

}∣∣∣ = n− 2.

By Theorem 11, then, D̃(Kn(n, n)) ≥ 2n−3. We easily have that D̃(Kn(n, n)) ≤
2n − 3: complete n − 2 fusions to leave two copies of {1, . . . , n}, complete 1
translocation to eliminate n and leave {1, . . . , n − 1}, and then n − 2 fissions
to solve the instance. This is a linear move sequence of length 2n − 3 solving
Kn(n, n). ut

Theorem 16. 2n− 3 ≥ D(Kn(n, n)) ≥ 2n− 3− log4/3(2n− 3).

Proof. Clearly for any synteny instance D(S(n, k)) ≤ D̃(S(n, k)). Then, from
the bound on linear synteny proved by DasGupta et al, we have that

D̃(Kn(n, n)) ≥ D(Kn(n, n)) ≥ D̃(Kn(n, n))− log4/3 D(Kn(n, n))

≥ D̃(Kn(n, n))− log4/3 D̃(Kn(n, n)).

By Lemma 15, we have

2n− 3 ≥ D(Kn(n, n)) ≥ 2n− 3− log4/3(2n− 3).

ut

Note that this is almost tight, with only a log4/3(2n − 3) window for the
syntenic diameter. Even more strongly, however, we conjecture that there is no
way to solve Kn(n, n) in any faster way than the linear sequence described in
the proof of Lemma 15:

Conjecture 17. D(Kn(n, n)) = 2n− 3.

9 A Preliminary Implementation

We have implemented all of the heuristics discussed above (H, F , and F ′) in
Standard ML. The full implementation is approximately 750 lines of code. We
have run these algorithms on eight sets of real synteny data, found on the INRA
Comparative Homology Database [4]. We make the following observations based
upon the results of these tests:

– In all cases, F ′ performed at least as well as F ; on one of the eight data sets,
F ′ outperformed F by one move.

– In most cases (5 of 8), the component bound was actually attained by both
F and F ′. In the 6th case, F ′ achieved the component bound and F was
within one move of it. In each of these six cases, the instance can be solved
using only translocations.

The latter point may raise some question about the validity of the model (that
it is too easy to solve too many instances, and thus that the model fails to be
informative about relative distances among groups of species), or may indicate
that there is simply insufficient synteny data presently available.

On the Structure of Syntenic Distance 65

10 Conclusions and Future Work

We have proven a number of interesting structural results for syntenic distance,
including monotonicity and the fact that improving the approximation ratio for
this problem will require an algorithm that works among components. These
results may help in solving the obvious remaining open question:

– Is there an approximation algorithm for syntenic distance that achieves an
approximation ratio strictly better than 2?

The lower bound from Theorem 11 may be useful in improving the approximation
ratio. Other interesting open questions include:

– Can connected synteny be approximated any better than general synteny?
– Can we improve the bound on D(Kn(n, n)) and prove Conjecture 17?

Acknowledgements. We thank Jon Kleinberg for extensive and fruitful discus-
sions on numerous aspects of this paper and the syntenic distance problem.
We also thank Chris Jeuell, Manish Sambhu, and Wes Weimer for reading and
commenting on previous versions of this paper.

References

[1] Vineet Bafna and Pavel A. Pevzner. Genome rearrangements and sorting by re-
versals. In 34th IEEE Symposium on Foundations of Computer Science, pages
148–157, 1993.

[2] Vineet Bafna and Pavel A. Pevzner. Sorting by transpositions. In Proceedings of
the 6th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 614–623,
1995.

[3] Bhaskar DasGupta, Tao Jiang, Sampath Kannan, Ming Li, and Elizabeth Sweedyk.
On the complexity and approximation of syntenic distance. In 1st Annual Inter-
national Conference on Computational Molecular Biology, pages 99–108, 1997.

[4] Institut National de la Recherche Agronomique. Comparative homology database.
http://locus.jouy.inra.fr/cgi-bin/lgbc/mapping/common/taxonomy.pl.

[5] Jason Ehrlich, David Sankoff, and Joseph H. Nadeau. Synteny conservation and
chromosome rearrangements during mammalian evolution. Genetics, 147(1):289–
296, September 1997.

[6] Vincent Ferretti, Joseph H. Nadeau, and David Sankoff. Original synteny. In 7th
Annual Symposium on Combinatorial Pattern Matching, pages 159–167, 1996.

[7] Pavel Pevzner and Michael Waterman. Open combinatorial problems in computa-
tional molecular biology. In Proceedings of the Third Israel Symposium on Theory
of Computing and Systems, pages 158–173, January 1995.

[8] David Sankoff and Joseph H. Nadeau. Conserved synteny as a measure of genomic
distance. Discrete Applied Mathematics, 71:247–257, 1996.

Physical Mapping with Repeated Probes:

The Hypergraph Superstring Problem

Serafim Batzoglou1 and Sorin Istrail2

1 MIT Laboratory for Computer Science, Cambridge, MA 02139, USA
serafim@theory.lcs.mit.edu

2 Sandia National Laboratories, Massively Parallel Computer Research Lab
MS1110, Albuquerque, NM 87185-1110

scistra@cs.sandia.gov

“A problem for the next century.”
Paul Erdös

Abstract. We focus on the combinatorial analysis of physical mapping
with repeated probes. We present computational complexity results, and
we describe and analyze an algorithmic strategy. We are following the
research avenue proposed by Karp [9] on modeling the problem as a com-
binatorial problem – the Hypergraph Superstring Problem – intimately
related to the Lander-Waterman stochastic model [16]. We show that a
sparse version of the problem is MAXSNP-complete, a result that carries
over to the general case. We show that the minimum Sperner decompo-
sition of a set collection, a problem that is related to the Hypergraph
Superstring problem, is NP-complete. Finally we show that the General-
ized Hypergraph Superstring Problem is also MAXSNP-hard. We present
an efficient algorithm for retrieving the PQ-tree of optimal zero repeti-
tion solutions, that provides a constant approximation to the optimal
solution on sparse data. We provide experimental results on simulated
data.

1 Introduction and Previous Work

Physical mapping using hybridization data involves the construction of genomic
maps based on the information contained in the clone-probe hybridization ma-
trix. The mapping technique has to cope with combinatorial difficulties that are
specific to the hybridization data. There are errors like chimerism, false nega-
tives or false positives, that come from the limitations in experimental accuracy.
Errors introduce specific combinatorial problems whose solutions could provide
good mapping hypotheses. Usually these optimization problems are NP-hard
and various heuristics – based on generalizations of the Consecutive Ones Prop-
erty (C1P) [14] – have been designed to cope with them e.g., [7], [4]. Another
important combinatorial dimension of the mapping problem arises from the the
fact that most probes have multiple occurrences on the genomic region to be
mapped. The literature dealing with algorithms for mapping in the presence of

M. Crochemore, M. Paterson (Eds.): CPM’99, LNCS 1645, pp. 66–77, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Physical Mapping with Repeated Probes 67

repeated probes is quite limited. In this paper we consider the combinatorial
difficulties of physical mapping with repeated probes, we identify some compu-
tational bottlenecks, and we propose algorithms that exhibit various degrees of
measurable success.

The fundamental modeling paper of the area is the paper by Lander and Wa-
terman [5] in which the widely accepted Lander-Waterman model is introduced
and analyzed; see also [13], [3] and [11] for further mathematical and statisti-
cal analyses. According to the Lander-Waterman model, clones are distributed
uniformly along the genomic region, and probes are distributed according to a
Poisson distribution.

The only published algorithmic work focussing on mapping with repeated
probes seems to be [6], although further recent work devoted to the problem is
in progress [10], [18]. In [6] algorithmic strategies are proposed, based on the
Lander-Waterman model by attempting to approximate the likelihood function,
leading to NP-complete optimization problems that are reasonably tractable in
practice. The algorithmic strategy proposed there uses local search 3-opt Lin-
Kernigan type heuristics. No approximation algorithms with a provable guar-
antee were obtained. Based on this work, Karp [9] proposed the problem of
designing approximation algorithms with guaranteed error bounds for the short-
est superstring of a set collection – in our present terminology, the Hypergraph
Superstring Problem. This optimization problem is a combinatorial problem inti-
mately related to the Lander-Waterman model, capturing the search for minimal
explanations of the hybridization data. This combinatorial problem was intro-
duced before (see [19], [21], [8]) and it is notoriously difficult [8], [12]. We are
interested here in the sparse version of the problem, consistent with biologically
relevant data of the Lander-Waterman model.

Kou proves in a paper devoted to information retrieval and file organiza-
tion [20] that a variant of the C1P – modeling multiple storage of records – is
NP-complete. In our terminology the result is that the Hypergraph Superstring
Problem for strict Sperner hypergraphs is NP-complete. In [8], non-tight upper
and lower bounds were obtained for the hypergraph superstring length for the
special case of the hypergraph being the power set of a finite set. [17] gives a
comprehensive overview of the problem.

A clone-probe hybridization matrix is a 0/1 matrix with rows representing
clones, columns representing probes, and a 1 in position (i, j) if and only if
probe j is incident to clone i. Any permutation of the columns of such a matrix
results in the same clone/probe incidence relationship. A collection of clones
has the Consecutive Ones Property (C1P)[14] if there is a permutation of the
columns of the hybridization matrix that allows each row (clone) to be of the form
0 · · · 01 · · · 10 · · ·0 - in a consecutive ones form. The obvious biological relevance
of the C1P is that each clone spans a connected region of the genome. A clone-
probe hybridization matrix containing “perfect” data, i.e., containing no errors
and only unique probes, is a matrix that obeys the C1P. An important property
for a heuristic mapping algorithm is to retrieve the C1P in the absence of errors
[4]. This is one of the properties that our mapping algorithms achieve.

68 Serafim Batzoglou and Sorin Istrail

A feature of the Lander-Waterman model is the Sperner property of a set
collection: no set is included in the other. Indeed, as the number of probes in-
creases, the set of clones of the Lander-Waterman model has the Sperner prop-
erty with high probability. The PQ-tree algorithm [14] that retrieves the C1P
uses a framework that hierarchically decomposes the initial collection of sets into
subcollections that avoid sets included in unions of other sets.

The C1P property of a hybridization matrix ensures that there are no re-
peated probes. The Sperner decomposition of a set collection satisfying the C1P,
and the optimal merging of sets in such a collection to obtain a PQ-tree are
relatively easy computing tasks. Both tasks become computationally intractable
for very sparse instances of data with repeated probes To get insight into the
new combinatorial difficulties, consider the intersection graph IG of a set col-
lection. The vertices are the sets of the collection, and an edge exists between
two vertices when the corresponding sets intersect. In the C1P case, the strict
Sperner collections are sets of disjoint paths (SDP) in IG, while in the Hyper-
graph Superstring Problem they are general graphs. These facts point out to the
importance of strict Sperner collections, as building blocks in the hierarchical
decomposition of the Hypergraph Superstring Problem. As we will see in this
paper, both the Sperner decomposition as well as the optimal merging of the
sets in a strict Sperner collection are MAXSNP- /NP-complete tasks.

In all the above discussion the implicit assumption has been that a probe
never appears more than once in a particular clone. This is a simplifying as-
sumption that is justifiable probailistically by the Lander-Waterman model, as
the Poisson parameter λ governing probe distribution decreases. However, this
property is not necessarily guaranteed in practice. In fact the genome deviates
from the Lander-Waterman model by means of certain sequence patterns that
are repeated and could cause higher than expected probe repetition. An alter-
native model therefore, is to seek the minimal explanation of the hybridization
data in the form of a multiset superstring that allows for possible repetition of
probes in a single clone. We prove that this problem is also MAXSNP-complete.

We present and test the GREEDY-MERGE algorithm that is based on
Sperner decomposition of hypergraphs, with the following provable performance:
(1) it retrieves the PQ-tree of all optimal zero-repetition superstrings; (2) on
strict Sperner hypergraphs it is provably a 1.5625-approximation algorithm;(3)
it provides a 2-approximation for hypergraphs with a restricted Sperner decom-
position. The algorithm has cubic worst-case time complexity, and is much faster
on sparse, biologically relevant data. We test the algorithm on data generated
according to the Lander-Waterman model and found that it approximates the
length of the initial (correct) superstring within a factor of 1.1 in most problems
involving 100-200 clones, 200-400 probes, and 1.5 to 4.9 average probe repetition.

Physical Mapping with Repeated Probes 69

2 Background

2.1 Physical Mapping

DNA molecules are very long sequences over an alphabet of four letters, or
nucleotides: {A, G, C, T }. The study of a genomic region involves breaking
it into smaller pieces that can be sequenced by present technologies. Physical
Mapping involves reassembling the true arrangement of the pieces on the initial
genomic region, and then sequencing the smallest subset of pieces that cover the
region. The cloning procedure incorporates the pieces of DNA into biological
hosts. Each such copy is a clone. Through self-replication, a large number of
copies of each clone are obtained. The result is a clone library containing many
copies of pieces of the initial genomic region. The reconstruction process is based
on data indicating “overlap” between clones. One method of detecting overlaps is
through the hybridization of short sequences, called probes. Hybridization occurs
when a probe sequence is complementary to a subsequence of a clone. If the
probe has a unique occurrence on the initial genomic region and if two clones are
hybridized by the same probe then they overlap. This assumes ideal experimental
conditions, i.e., no errors. So, unique probes detect overlap. However, in general
probes are complementary to multiple places on the genomic region so detecting
overlap is ambiguous. The information contained in the hybridization data can
be summarized as follows. Let the clones be {C1, . . . , Cn} and the probes be
{P1, . . . , Pm}. Let the matrix H be defined by H [i, j] = 1 if probe Pj hybridizes
to clone Ci, and H [i, j] = 0 otherwise. The problem studied in this paper is
that of using hybridization data given in the matrix H to reassemble the clones
such as to reconstruct the initial genomic region. Let us note that the process
of breaking the DNA into pieces and selecting probes, even in a perfect cloning
and hybridization experimental scenario, might result in loss of information.
Therefore, we may not be able to obtain the exact reconstruction. To well-define
the problem, we aim at obtaining the maximal mapping information consistent
with H .

2.2 The Lander-Waterman Model

We will first define the Lander-Waterman model and then formulate a combina-
torial problem in terms of hypergraphs, an appropriate framework for probe/clone
hybridization data. Then superstrings are introduced in order to search for the
minimal number total repetition of the probes needed to explain the hybridiza-
tion data.

The Lander-Waterman Model

1. A clone is an interval of length 1 contained in the interval [0, N]. The left end-
points of the clones are independent random variables, uniformly distributed
over [0, N − 1].

70 Serafim Batzoglou and Sorin Istrail

2. Probes 1, . . . ,m are distributed along the interval [0, N] according to in-
dependent Poisson processes of rate λ. That is, a probe occurs at a short
interval of length dx with probability λdx, and disjoint intervals are inde-
pendent.

2.3 The Hypergraph Superstring Problem

Hypergraphs. A hypergraph is a pair H = (X,S), where X is a finite set, and
S = {S1, . . . , Sm} is a family of subsets of X . The sets Si are called hyper-
edges. The following definitions apply to hypergraphs as well to families of sets.
A hypergraph is B-bounded if all of its hyperedges have at most B elements.
A hypergraph is a chain if S = {S1, . . . , Sm} and S1 ⊆ S2 ⊆ · · · ⊆ Sm. A
hypergraph is called antichain, or Sperner, if no Si is included in Sj , for every
i, 6= j, 1 ≤ i, j ≤ m. A hypergraph is called strict Sperner if no hyperedge is
included in the union of the other hyperedges, or equivalently every hyperedge
has a characteristic element.

A Sperner decomposition of a hypergraphH = (X,S) is a decomposition of S
into subfamilies of sets called levels S1, . . . ,St such that: (1) the levels partition
S, i.e. S = S1 ∪ · · ·∪Sm and Si∩Sj = ∅, 1 ≤ i 6= j ≤ t; (2) Si is a strict Sperner
family of sets for every i, 1 ≤ i ≤ t and (3)

⋃St ⊆
⋃S2 ⊆ · · · ⊆ ⋃St.

Consider the clone-probe hybridization matrix of a Lander-Waterman pro-
cess. Let P be the set of probes, and let C = {C1, . . . Cm} be the clones viewed as
sets of probes. Then HLW = (P, C) is the associated hypergraph. According to
the Lander-Waterman model, the arrivals of the left endpoints of the clones are
distributed according to a Poisson process of rate m

N−1 . If |P | is large enough,
with high probability no clone is a subclone of any other clone. Then HLW is a
Sperner hypergraph. The average number of probes per clone is λ|P |.

Multiset Superstrings. A string σ = σ1 · · ·σr, is a multiset superstring of
any subset of U(σ) = {S : 1 ≤ β ≤ η ≤ r : S = {σβ , σβ+1, . . . , ση}}.

Set Superstrings. A string σ is a set superstring (or simply, superstring)
of any subset of V (σ) = {S : ∀β ≤ i < j ≤ η σi 6= σj , S = {σβ , . . . , ση}}

For S ∈ U(σ) or S ∈ V (σ) we define βσ(S), ησ(S) so that S = {σβσ(S), . . . ,
ση(S)}. We say that σ expresses S if S ∈ U(σ) (S ∈ V (σ), also denoted by S ∈ σ.
A multiset (set) superstring σ is non-repeting if no letter in σ occurs more than
once.

Now we are ready to define our main computational problems:

The Hypergraph Set Superstring Problem: Given a Hypergraph H =
(X,S) find a superstring σ = σ1 . . . σn for H of minimal length n.

The Hypergraph Multiset Superstring Problem: Given a Hypergraph
H = (X,S) find a multiset superstring σ = σ1 . . . σn for H of minimal length n.

Remark. Let us remark that the corresponding Graph Superstring Problem,
where the hyperedges have exactly two elements can be solved in time linear
in the number of edges in the graph. The minimum superstring coincides with
the Eulerian path if the graph has such a path. In the general case, it coincides
with the minimum size collection of Eulerian paths that cover all the edges.

Physical Mapping with Repeated Probes 71

Our problem, the Hypergraph Superstring problem, is therefore a hypergraph
generalization of the Eulerian path problem in graphs.

The Sperner Decomposition of a Hypergraph Problem: Given a Hy-
pergraphH = (X,S) and an integer k > 0, decide whether there exists a Sperner
decomposition into k levels.

3 Computational Complexity of the Hypergraph
Superstring Problems

We show that the hypergraph set superstring, and the hypergraph multiset
superstring problems are MAXSNP-hard. We prove these results with an L-
reduction from TSP(1,2) on bounded degree undirected graphs. The same re-
duction proves both problems to be MAXSNP-hard. We are thus strengthening
Kou’s result by showing that the same problem is MAXSNP-hard, which im-
plies that it is computationally intractable to approximate within better than
a multiplicative constant of optimal. We also show that computing a Sperner
Decomposition of a hypergraph is a hard computational task: it is NP-complete
to decide whether a two-level decomposition exists and more generally, to find
the Sperner Decomposition with a minimal number of levels.

Theorem 1. The Hypergraph Set Superstring Problem and the Hypergraph Mul-
tiset Superstring Problem are MAXSNP-hard even for 5-bounded strict Sperner
hypergraphs.

Proof. We use an L-reduction (intuitively a linear reduction, refer to [1]) from
TSP(1,2) on undirected graphs, on instances where the graph formed by length-
one edges has bounded degree. TSP(1,2) is the traveling salesman problem with
distances 1, 2. That is, given a complete graph G with edges of distance 1 and 2,
find the shortest Hamiltonian path on the graph.1 This problem has been shown
to be MAXSNP-complete even if restricted to instances where the graph formed
by the length-one edges has bounded degree [2].

Let HG = (V,E) be a graph of bounded degree D specifying an instance of
TSP(1,2). That is,HG contains the edges of cost 1 in the corresponding TSP(1,2)
graph G. For every v ∈ V = {1, . . . , n}, with associated edges (v, u1), . . . , (v, ud)
where d ≤ D, define hyperedge Sv = {v, {v, u1}, . . . , {v, ud}}. The hypergraph
H is then (X,S) where X =

⋃
v∈V Sv and S = {Sv|v ∈ V }. Clearly the above

reduction can be performed in logarithmic space. Notice that the resulting set
collection is Sperner because every set Sv has a distinguishing element v ∈ Sv.
Moreover, ∀v : |Sv| ≤ D + 1.

We will show that there is a Hamiltonian path on the graph G of TSP(1,2)
of cost n − 1 + k if and only if there is a (multiset, or set) superstring σ for S
of length m+ k + 1 where m = |E|. Since HG is a graph of degree bounded by
D, m ≤ D × n is linear in n. This will establish that the above reduction is an
L-reduction.
1 That is, the shortest path that visits each node exactly once.

72 Serafim Batzoglou and Sorin Istrail

Say there is a Hamiltonian path of cost n− 1 + k. Since all edges have costs
1 or 2, we know the path uses n − 1 − k edges from H and k edges of cost 2.
Construct σ of cost m+ k+ 1 as follows: σ arranges the sets Sv in the order the
nodes v are arranged on the path. Whenever an edge (u, v) in HG is used on the
path, Su and Sv overlap in one element in σ. Then,

|σ| =
s∑

v=1

|Sv| − (n− 1− k) = m+ k + 1

Conversely, say that σ is a superstring of lengthm+k+1 =
∑n

v=1 |Sv|−(n−k−1).
Construct a path by reading in σ each vertex in the order it appears. Since σ
is shorter than

∑n
v=1 |Sv| by (n − 1 − k) there is a total overlap of (n − 1 − k)

between the sets on the superstring. Since no two sets contain more than one
common element, there are (n − 1 − k) sets that overlap. These sets have a
common edge. This establishes a total of (n− 1− k) edges from HG used in the
path, and hence a path of cost (n− 1 + k).

Theorem 2. The Sperner Decomposition of a Hypergraph Problem is NP-com-
plete. In particular, distinguishing between 2 and 3 levels for the minimum
Sperner decomposition of a hypergraph is NP-complete, even for 3-bounded hy-
pergraphs with size ≤ 1 hyperedge intersections.

Proof. (Sketch). Given a hypergraphH = (X,S) and a partition of S into S1,S2,
we can check efficiently the properties for a Sperner decomposition. Therefore,
the Sperner Decomposition in k levels problem is in NP. We will show NP-
hardness by a reduction from 3SAT.

Let φ = ψ1

∨
. . .

∨
ψm be a 3-CNF formula, with variables x1, . . . , xn. We

construct a hypergraph Sφ. Figure 1 shows the main part of the construction.
Two or three boxes connected by a line network correspond to one hyperedge.

Any “o” contained in a box is a unique element in X . An “o” or “s” contained
only in one box is contained only in one set. Such a set has to be in layer 1,
because the union of layer 1 contains the union of layer 2. A set containing
elements all belonging to sets in layer 1, has to be in a layer 6= 1.

Associate layer 1 with TRUE and layer 2 with FALSE. Then the top part
of Figure 1 containing the three sets labeled TRUE, TRUE, and FALSE, should
be self-explanatory. It follows that any two sets labeled x and x̄ in Figure 1 are
in different layers, in any 2-layer Sperner decomposition.

Assign either all the x-sets, or all the x̄-sets to layer 1 for each variable x,
thereby constructing a truth assignment. Among the x-sets and the x̄-sets, notice
in Figure 1 that there are some containing an s-element. These sets are meant
to correspond to literals in the clauses of φ.

For each variable x with kx occurrences of literal x and k′x occurrences of
literal x̄ construct kx x-sets with an s-element, and k′x x̄-sets with an s-element.

Physical Mapping with Repeated Probes 73

xx

x

x

x

x.

o

o

o

o

o

o o

o o

s s s s

TRUE

TRUE FALSE

Fig. 1. Gadget for truth assignment

Finally, three s-elements collapse to one if and only if the corresponding literals
are in the same clause ψi. Therefore there is one s-element for each clause.

Clearly a truth assignment satisfying every clause translates to a 2-level
Sperner decomposition. Conversely, a 2-level Sperner decomposition correctly
assigns truth value: ∀x all the x-sets are in the same level, complement to the
one with the x̄-sets. Moreover, every s-element belongs to three sets one of which
in level 1, thereby satisfying the corresponding clause.

4 Algorithms

We designed a collection of algorithms that incrementally deal with more com-
plex hypergraph structures. They provide a collection of subroutines from which
the SPERNER-GREEDY-MERGE algorithm is constructed. The algorithm
SPERNER-GREEDY-MERGE retrieves the Consecutive Ones Property for a
hybridization matrix, which hints on the strength of the algorithm to deal with all
different kinds of imperfections in physical mapping data. Moreover, SPERNER-

74 Serafim Batzoglou and Sorin Istrail

GREEDY-MERGE has approximation guarantees on sparse, biologically rele-
vant data. Complete details of the algorithms are included in the Appendix sent
to the Program Committee.

The Merge-Sequence-Pair procedure is the basic building block of the al-
gorithms. The algorithm merges pairs of already merged set collections. We
say that a sequence of sets A = [A1, . . . , Ar] is a superstring collection for
a set collection S = {C1, . . . , Cs} if for each i, 1 ≤ i ≤ s there are ji, ki,
1 ≤ ji ≤ ki ≤ n such that Ci =

⋃
ji≤l≤ki

Al, and Al, Am are disjoint for
all ji ≤ l < m ≤ ki. If A and B are superstring collections for clone (set)
collections C1, . . . , CsA and D1, . . . , DsB , then Merge-Sequence-Pair finds the
optimal way of merging the two set sequences A and B into Merge(A,B), a su-
perstring collection for {C1, . . . , CsA , D1, . . . , DsB . Merge-Sequence-Pair requires
that {C1, . . . , CsA , D1, . . . , DsB} is Sperner, and respects the order of the sets in
set sequences A and B. Merge-Sequence-Pair was designed to provide a way to
merge efficiently, in an incremental greedy way, large collections of sets into one
Q-node from which superstrings of the set collections can be obtained.

The SPERNER-GREEDY-MERGE algorihtm uses the Merge-Sequence-Pair
algorithm in a greedy way to construct superstrings. That is, all possible Merge-
Sequence-Pair operations are performed, each time performing the one that
yields the greatest overlap between the two structures that are merged. Each
of the initial structures (superstring collections) consists of one clone from the
data set. The SPERNER-GREEDY-MERGE algorithm assumes that the clone
collection is Sperner. At the first step of the algorithm all the clone intersec-
tion sizes are computed, and among the clone pairs that provide maximum
intersections, one is chosen arbitrarily. This pair (call it C,D) is merged into
a set sequence consisting of three sets, C\D,C ∪ D,D\C. At each step, all
new overlaps between the newly merged set sequence and the existing ones are
computed. The pair to be merged is chosen arbitrarily among the ones with max-
imum overlap. The algorithm runs till there is no possible merge with non-zero
overlap. In the case that there is a non-repeating superstring for the initial set
of clones, SPERNER-GREEDY-MERGE retrieves the PQ-tree of all possible
non-repeating superstrings.

The GREEDY-MERGE is dealing with Sperner levels, accommodating in-
clusions from higher levels of the Sperner decomposition. GREEDY-MERGE re-
trieves the C1P-property for arbitrary hypergraphs. It is a generalization of the
PQ-tree C1P algorithm; it preserves the merges that are necessary for retrieving
the consecutive ones property, performing them in a greedy fashion according
to maximum overlaps. The GREEDY-MERGE algorithm uses the SPERNER-
GREEDY-MERGE algorithm as a subroutine.

The algorithm 2-PHASE-GREEDY is an approximation algorithm that works
well on the strict Sperner hypergraphs. It achieves a 1.5625 worst-case ratio
to the optimal solution. This algorithm is based on the SPERNER-GREEDY-
MERGE algorithm, with some additional restrictions on the order in which the
Merge-Sequence-Pair operations are performed.

Physical Mapping with Repeated Probes 75

5 Experimental Results

We implemented the SPERNER-GREEDY-MERGE algorithm and ran it on
randomly generated data. The data were generated according to the Lander-
Waterman model, where clones are intervals of length 1 distributed uniformly
along the interval [0, N].2 The interval [0, N] was divided in 1000N discrete
positions and probes were distributed along [0, N] according to a Poisson process,
except that for each clone C, a probe p was allowed to occur only once. Any
occurrences of p in C after the first, were discarded. This distribution is very
similar to a pure Poisson distribution if, as in our case, the mean arriving time
of a probe is much greater than the length of a clone, which is 1 in our case. The
hypergraph that was given as input to SPERNER-GREEDY-MERGE consisted
of all the maximal generated clones.

Table 1 displays some results of running the algorithm while varying N ,
the length of the interval where the clones are distributed; n, the number of
clones used for generating the data, m, the number of probes used for generating
the data; and λ for exponential distribution of the arriving time of probes. p
is the average number of probes after generating the data, ravg is the actual
average number of repetitions of probes, approximately = λN , and rmax is the
average over all generated sequences, maximum number of repetitions of a single
probe. L0 is the average length of the generated sequences, and LGM is the
average length of the sequences or sequence fragments produced by SPERNER-
GREEDY-MERGE. To facilitate presentation, the performance is presented in
percentage of optimal that correspond to the ratio L0/LGM . That is, when we say
that the performance is 95.9% as on the table below in the experiment running
with N = 20 and 300 probes, we mean that SPERNER-GREEDY-MERGE
produces on average a superstring collection of total length 1.0428× [length of
the initial sequence].

N n m p ravg rmax L0 LGM Performance

5 200 200 159.2 1.6 3.9 259.1 292.7 88.7%

10 100 200 118.3 1.4 3.8 165 163.2 100%

10 100 200 145 1.5 3.7 216.5 238.8 90.7%

10 100 200 159 1.7 4.7 268 319.5 84.2%

20 100 200 186.7 2.4 6.8 451.3 453.8 99.5%

20 100 200 192.8 3 7.1 555.3 585.5 94.9%

20 100 200 196.4 3.4 7.8 660.3 699 94.5%

20 100 300 275.5 2.4 6.5 638 665.5 95.9%

30 100 300 293 3.3 8.5 951 913 100%

30 150 300 293 3.3 8.5 969 1041 93.1%

40 200 400 397.5 4.9 12.5 1886.5 1937.5 97.4%

Table 1. Results on data generated according to the Lander-Waterman model.

2 The clone beginnings are distributed along [0, N − 1] with uniform probability.

76 Serafim Batzoglou and Sorin Istrail

As can be seen, the major factor that seems to hurt the performance of the
algorithm is the coverage of the gene, i.e. the average number of clones that cover
each point in the interval [0, N]. This indicates that a hypergraph that is Sperner
decomposable in a few layers is easier to handle than one that is decomposable
in many layers. This experimental observation is consistent with our intuition
that the Sperner Decomposition problem captures the essence of the difficulty
of computing minimal superstrings. High probe repetition also hurts the perfor-
mance of the algorithm, as expected. The performance of the algorithm increases
with the number of probes. Therefore the algorithm is expected to produce good
results given that a sufficient number of probes is used in the experiment. Finally
the performance seems unaffected as the number of clones increases. Occasion-
ally the algorithm produces a shorter superstring than the initial superstring.
This would correspond to experimental conditions where either too few clones,
or too few probes are used, resulting in under-specified instances of the problem.

6 Future Work

Further research will focus on returning to the Lander-Waterman model to re-
late the worst-case algorithmic approximability performance, to the probabilistic
analysis of the algorithmic performance in the stochastic model. The mapping
difficulties introduced by repeated probes as reported by the genomic centers for
Human Chromosomes, e.g., the Human Y Chromosome, [15] seem well captured
by the combinatorial structure of our algorithms. We are planning a detailed
experimental analysis of the performance of our algorithms on real data.

On the theoretical side, it is an open question to prove a stronger inapprox-
imability result for MIN-HYPERGRAPH-SUPERSTRING, or to demonstrate
a constant approximation algorithm for the general problem.

Acknowledgements

We would like to thank Mike Waterman for discussions on the problem.
The first author would like to thank his advisor, Bonnie Berger, for dis-

cussions on the problem and for initiating the communication between the two
authors. The first author is supported by a Merck Fellowship.

The second author wants to thank Lee Istrail for the information that Paul
Erdös was going to give a lecture to him and his fellow finalists of the Mathe-
matics Olympiad, at the invitation of the University of New Mexico, the host of
the olympiad finals. This led to a one day long, unforgettable visit of Erdös at
Sandia Labs.

This work was supported by the Applied Mathematical Sciences program,
U.S. Department of Energy, Office of Energy Research, and was performed at
Sandia National Laboratories, operated for the U.S. Department of Energy under
contract No. DE-AC04-94AL85000.

Physical Mapping with Repeated Probes 77

References

[1] Papadimitriou C.H. Approximability. In Computational Complexity. Addison-
Wesley Publishing Company, 1994.

[2] Papadimitriou C.H. and Yannakakis M. The traveling salesman problem with
distances one and two. Math. of Operations Research, pages 1–12, 1993.

[3] Green E. D. and Green P. Sequence-tagged site (sts) content mapping of human
chromosomes: Theoretical considerations and early experiences. PCR Methods
and Applications, 1:77–90, 1991.

[4] Greenberg D.S. and Istrail S. Physical mapping by sts hybridization: Algorithmic
strategiews and the challange of software evaluation. Journal of Computational
Biology, 2, Number 2:219–274, 1995.

[5] Lander E.S. and Waterman M.S. Genomic mapping by fingerprinting random
clones: A mathematical analysis. Genomics, 2:231–239, 1988.

[6] Alizadeh F., Karp M. R., Newberg L. A., and Weisser D. K. Physical mapping
of chromosomes: A combinatorial problem in molecular biology. Algorithmica,
13:52–76, 1995.

[7] Alizadeh F., Karp R.M., Weisser D.K., and Zweig G. Physical mapping of chro-
mosomes using unique probes. Manuscript, 1995.

[8] Lipski W. Jr. On strings containing all subsets as substrings. Discrete Mathemat-
ics, 21:253–259, 1978.

[9] Karp R. M. Mapping the genome: Some combinatorial problems arising in molec-
ular biology. Symposium on Discrete Algorithms, SODA 93:278–285, 1993.

[10] Waterman M.S. Personal communication about the work of Simon Tavare.
Ocrober, 1997.

[11] Nelson D. O. and Speed T. P. Statistical issues in constructing high resolution
physical maps. Statistical Science, 9, No. 3:334–354, 1994.

[12] Erdos Paul. Personal Communication, 1993.
[13] Arratia R., Lander E. S., Tavare S., and Waterman M. S. Genomic mapping by

anchoring random clones: A mathematical analysis. Genomics, 11:806–827, 1991.
[14] Booth K. S. and Lueker G. S. Testing for the consecutive ones property, interval

graphs and planarity using pq-tree algorithms. J. Comput. Sys. Sci., 13:335–379,
1976.

[15] Foote S., Vollrath D., Hilton A., and Page D. The human y chromosome: Overlap-
ping dna clones spanning the euchromatic region. Science, pages 60–66, October
1992.

[16] Lander E. S. and Waterman M. S. Genomic mapping by fingerprinting random
clones: A mathematical analysis. Genomics, 2, Number 2:219–274, 1988.

[17] Waterman M. S. In Introduction to Computational Biology. Chapman and Hall,
1995.

[18] Shamir. Personal communication, October 1997.
[19] Ghosh S.P. Consecutive storage of relevant records with redundancy. Communi-

cations of the ACM, 18:464–471, 1975.
[20] Kou A. T. Polynomial complete consecutive information retrieval problems. SIAM

J. Computing, 6, No.1:67–75, 1977.
[21] Lipski W. Information storage and retrieval – mathematical foundations ii. The-

oretical Computer Science, 3:183–212, 1976.

Hybridization and Genome Rearrangement

Nadia El-Mabrouk1 and David Sankoff2

1 Département d’informatique et de recherche opérationnelle, Université de Montréal,
CP 6128 succursale Centre-Ville, Montréal, Québec, H3C 3J7.

mabrouk@iro.umontreal.ca

2 Centre de recherches mathématiques, Université de Montréal,
CP 6128 succursale Centre-Ville, Montréal, Québec, H3C 3J7.

sankoff@ere.umontreal.ca

Abstract. We infer post-hybridization rearrangements in a hybrid ge-
nome, given the gene orders on its chromosomes and some knowledge of
the two parent genomes. We study this in two biologically and computa-
tionally different contexts, genome fusion and interspecific fertilization.
Exact algorithms are furnished for some cases, and a heuristic based on
the Hannenhalli-Pevzner theory for another.

1 Introduction

An important mechanism for the rapid emergence of a new, qualitatively dif-
ferent species is the hybridization of two existing species. These parent species
will generally be fairly closely related, but may have very different phenotypic
expressions. There are actually several types of biological processes that give
rise to hybrids, and these are perhaps most widespread in the plant kingdom.
In this paper, we explore two such processes – genome fusion and interspecific
fertilization. In the first case we give an exact, linear time algorithm for recon-
structing the ancestral hybrid from knowledge of the modern genome and data
about which gene came from which parent species. We then introduce additional
data, on parental species gene order, and try to reconstruct two stages of hybrid
genome evolution, intra- and intergenomic (referring to the haploid components
originating from the two parents). We adapt the techniques of Hannenhalli and
Pevzner [2,3] in a heuristic for separating these stages and give upper and lower
bounds for the optimal transition point between them.

In the case of interspecific fertility, we hypothesize that a key stage in the
stabilization of the hybrid genome can be found by calculating the median of
three diploid genomes, the two parents and the hybrid. We refer to a reduction
of this problem [5] to the Traveling Salesman Problem.

Definitions

A genome G is a collection of N chromosomes G1, · · · , GN . A chromosome
is a string of signed (+ or −) elements from a set E of genes. Each gene in E
appears exactly once in the set of N chromosomes.

M. Crochemore, M. Paterson (Eds.): CPM’99, LNCS 1645, pp. 78–87, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Hybridization and Genome Rearrangement 79

For string X = x1, · · · , xm, we write−X for the inverted string−xm, · · · ,−x1.
We define the following rearrangement operations as in Figure 1: Inversion,
(or reversal) where any proper substring of a chromosome is inverted. (Inverting
the entire chromosome only invokes an alternate notation for the identical chro-
mosome, and does not constitute a rearrangement operation.) Translocation,
where two chromosomes (one or both inverted), exchange prefixes of any length.
A fusion is a translocation where one of the prefixes is the entire chromosome
and the other prefix is null. A fission is a translocation where one of the starting
chromosomes is the null string. Our analyses of translocations implicitly include
fusions and fissions.

?

6

chromosome 1

chromosome 2

a b c d
w x y z

chromosome 1′

chromosome 2′

a b y z
w x c dtranslocation -

? ?
inversion

w x a b c y z w x-c-b-a y z
-

Fig. 1. Schematic view of genome rearrangement processes. Letters represent
positions of genes. Vertical arrows at left indicate boundaries of affected sub-
strings. Translocation exchanges prefixes of two chromosomes. Inversion reverses
the order and sign of genes in a substring (dotted segment).

2 Resolution of Tetraploidy; Ancestral Synteny Unknown

One form of hybridization of two karyotypically distinct species sees the fusion of
two genomes followed by a series of chromosomal rearrangement events until the
hybrid genome is finally stabilized as a diploid (e.g. [1]). The two homologous
versions of each gene, one from each parent species, may diverge functionally
to create a gene family. From the moment of hybridization till the present, the
two parent species may also undergo chromosomal rearrangement. Thus we have
direct access to neither the ancestral hybrid genome nor the two contributing
strains. In this section we provide a method for reconstructing the ancestral
hybrid, given the order of the genes on its chromosomes as well as data (obtained,
for example, from sequence analysis) on which of these genes originated from each
of the parent species.

2.1 Formalization

Consider two genomes A and B having disjoints sets of genes, E(A) and E(B),
respectively. Let G be a third genome with N chromosomes and gene set E =

80 Nadia El-Mabrouk and David Sankoff

E(A) ∪ E(B). Given only E(A), E(B), and G, including how the genes are dis-
tributed and ordered on the N chromosomes of G, the problem is to find d(G),
the minimal number of inversions and translocations necessary to transform G
into an ancestral hybrid genome H (with any number of chromosomes) sat-
isfying the following condition: each chromosome of H contains genes from A
only, or from B only. See Figure 2.

?

XXz
���

genome G

E(B)
E(A)

genome H

{
}

time of
hybridization

present

Fig. 2. Evolution of a hybrid genome resulting from genome fusion when gene
origins, but not ancestral genome organization, is known. Genome H is to be
reconstructed from knowledge of genome G, and ancestral gene sets E(A) and
E(B) only.

2.2 Algorithm

The following procedure solves this problem exactly in time linear in the number
of genes. The output attains the lower bound of the type found by Watterson et
al., except for certain special cases.

– In each chromosome Gi of G, amalgamate each substring of consecutive
A-origin genes to form an A-segment. Similarly form the B-segments.
A-segments and B-segments alternate along the length of the chromosome,
separated by breakpoints.

– Transform each chromosome with an odd number bi > 1 of breakpoints to
a chromosome consisting of a single A-segment and a single B-segment by
means of bi−1

2 inversions as follows.
• While there remain at least 3 breakpoints, invert the fragment between

the first and third breakpoints. Two A-segments are thus made adjacent
and two B-segments are made adjacent.

• Erase the breakpoints between the two adjacent A-segments and between
the two adjacent B segments, thus reducing the number of breakpoints
by two.

Hybridization and Genome Rearrangement 81

– Transform each chromosome with an even number bi > 2 of breakpoints to
a chromosome consisting of either two A-segments and a single B-segment,
or two B’s and one A, by means of bi−2

2 inversions as follows.
• While there remain at least 4 breakpoints, invert the fragment between

the first and third breakpoints. Two A-segments are thus made adjacent
and two B-segments are made adjacent.

• Erase the breakpoints between the two adjacent A-segments and between
the two adjacent B segments, thus reducing the number of breakpoints
by two.

– Form as many pairs of ABA and BAB chromosomes as possible. Two
translocations performed on each pair suffice to produce a homogeneous
A chromosome and a homogeneous B chromosome, allowing the erasure of
all four breakpoints.

– Suppose some 2-breakpoint chromosomes remain and they are all ABA.
They may be amalgamated two by two, each time with a translocation that
produces a homogeneous A chromosome and an ABA chromosome, and al-
lows the erasure of two breakpoints, until only one ABA remains.

– Suppose instead of the previous step, the only 2-breakpoint chromosomes
remaining are BAB. They may be amalgamated two by two, each time with
a translocation that produces a homogeneous B chromosome and an BAB
chromosome, and allows the erasure of two breakpoints, until only one BAB
remains.

– If there are any 1-breakpoint chromosomes, form as many pairs of them as
possible.
• If there are no 2-breakpoint chromosomes, transform each of the pairs of

one-breakpoint chromosomes into one homogeneous A chromosome and
one homogeneous B by means of a single translocation, and erase the
two breakpoints.

• If there is a 2-breakpoint chromosome, transform all but one of the pairs
of chromosomes into one homogeneous A chromosome and one homoge-
neous B by means of a single translocation, and erase the two break-
points. Then two translocations suffice to transform the remaining pair
and the 2-breakpoint chromosome into three homogeneous chromosomes,
and to erase all four remaining breakpoints.

– If 1- or 2-breakpoint chromosomes remain there are several cases:
• If all that remains is a single 1-breakpoint chromosome, one transloca-

tion (fission) is required to produce two homogeneous chromosomes and
remove the breakpoint.

• If all that remains is a single 1-breakpoint chromosome and a single 2-
breakpoint one, two translocations (one a fission) are required to produce
two homogeneous chromosomes and to remove all three breakpoints.

• If all that remains is a single 2-breakpoint chromosome, two transloca-
tions (fissions) are required to produce two homogeneous chromosomes
and to remove both breakpoints.

The output from this algorithm consists of homogeneous A chromosomes and
homogeneous B chromosomes only, and the number of steps is d∑i bie/2 + Ψ ,

82 Nadia El-Mabrouk and David Sankoff

where Ψ = 0 except if the last step of the algorithm must be activated, i.e.,
when there are no chromosomes Gi of forms A · · ·B or B · · ·A, and an unequal
number of chromosomes of forms A · · ·A and B · · ·B. Here, Ψ = 1.

Note that there are generally many equally good solutions to this problem. In
the next section, we reformulate the problem in order to pin down the structure of
the ancestral genome somewhat. This will require additional data on the parent
genomes and some assumptions about the amount of evolution in the hybrid
compared to the purebred descendants of the parents.

3 Resolution of Tetraploidy; Ancestral Synteny and Gene
Order Inferred

A second version of the hybridization problem uses the modern configurations
A, B and G of the two parent genomes and the hybrid genome, respectively, to
infer the three ancestral genomes A′, B′ and G′ at the moment of hybridization,
as on the left of Figure 3. Note that G′ consists of the chromosomes in A′ plus
the chromosomes in B′.

�
�
�
�
��� ??

A
A
A
A
AAU

XXz ��9

??

??

H = A + B

G

G′

A G

B′A′
G′

B

nA nG nB

time of
hybridization

present

nA + nB

intragenomic
only

nG

intra- and inter-
genomic

Fig. 3. Localization of ancestral hybrid immediately before intergenomic translo-
cations

As a first step, we infer the total number n of evolutionary steps required
to produce G from a construct H consisting of the chromosomes of A and the
chromosomes of B, as on the right of Figure 3. We assume that G′ is one of the
intermediate steps in this evolution so that n = nA + nB + nG, where nX is the
number of steps from genome X ′ to genome X , for X ∈ {A, B, G}.

Under the assumption that one of the first translocations to occur in the
stabilization of the hybrid will be an intergenomic one, involving chromosomes
from both A′ and B′, we could locate G′ at the last step on the path from H
to G before the first intergenomic translocation, as on the right of the figure.
Unfortunately, the optimal path is not unique, and there will generally be one
optimum whose first step is intergenomic, so that nA + nB = 0 and n = nG.
This may indeed be biologically meaningful in some contexts where hybrids
evolve more rapidly than their parents. In other cases we may prefer to look for

Hybridization and Genome Rearrangement 83

the path where nG is as small as possible, to allow for a maximum of evolution
in the parent species.

It is this latter problem we investigate in this section. First we sketch the
method of Hannenhalli and Pevzner [2,3], hereafter “H-P”, for finding the mini-
mum number of translocations and inversions necessary to transform one genome
into another, and show how a heuristic for finding a minimal nG solution to the
hybridization problem may be grafted onto their algorithm. We then show how
to calculate, relatively quickly, an upper bound for this heuristic based on one
step of the algorithm. Finally, we construct a lower bound based on a breakpoint
argument.

3.1 The H-P Algorithm and a Heuristic for nG

We will only sketch the H-P procedure, which is rather complex, and give ad-
ditional details for those aspects which are modified in our heuristic. The first
step in the comparison of two multi-chromosomal genomes through transloca-
tions and inversions is to reduce it to a problem of comparing two single chro-
mosome genomes through inversion only. These latter genomes are constructed
essentially by concatenating the individual chromosomes in the original genomes
end-to-end in an arbitrary order. (Additional dummy genes, called caps must be
appropriately inserted at the ends of the original chromosomes of both genomes).
Translocation in an original genome becomes inversion in the new one. In the
string representing a chromosome each gene +x is replaced by the pair xtxh,
and −x by xhxt.

To find the minimum inversions d(H, G) necessary to transform one single-
chromosome genome H to another, G, H-P constructs a cycle graph, a bi-
colored graph G(V, E) with vertex set V containing xt and xh for all genes in
E , where black edges connect neighboring vertices in H , and gray edges connect
neighboring vertices in G. Each vertex is thus adjacent to exactly one black
edge and one gray edge. G therefore has a unique decomposition into disjoint
alternating cycles. We set b(G) = |E| − 1, the number of black edges of G, and
c(G) to be the number of cycles of G. Note that c(G) is maximal when G = H .
The size of cycle C is the number of black (or gray) edges in C. The inversion
distance between H and G is then:

d(H, G) = b(G) − c(G) + h(G) + f(G) (1)

where h(G) is the number of hurdles in G, and f(G) = 1 if G is a fortress and
f = 0 if not. (These concepts will be discussed below.)

A key concept in the algorithm is the oriented component. A gray edge in
a cycle is oriented if the inversion disrupting the two adjacent black edges, i.e.,

a adjacent to b in H , b adjacent to c in G, c adjacent to d in H

becomes
a adjacent to c in H , c adjacent to b in G, b adjacent to d in H ,

84 Nadia El-Mabrouk and David Sankoff

replaces the cycle by two cycles. An oriented cycle is one containing at least one
oriented gray edge. Two cycles whose containing gray edges that “cross”, e.g.,
gene i adjacent to gene j in Cycle 1, gene k adjacent to gene t in Cycle 2 in G,
but ordered i, k, j, t in H , are connected. A component of G(V, E) is a subset of
the cycles, built recursively from one cycle, at each step adding all the remaining
cycles connected to any of those already in the construction.

An oriented component has at least one oriented cycle. Hurdles are a partic-
ular class of unoriented components. The entire graph G(V, E) is a fortress if a
certain configuration of hurdles obtains.

The H-P algorithm proceeds by decreasing h − c, the number of hurdles
minus the number of cycles at each step. It handles each oriented component
independently. If component C has γC black edges, and κC cycles, the algorithm
proceeds to find a series of γC − κC inversions that reduces the component to a
set of γC 1-cycles.

Hurdles are treated somewhat differently. There is no inversion which will
immediately increase the number of cycles in such a component. Instead, cer-
tain hurdles undergo an inversion which changes them into oriented components,
decreasing the number of hurdles by one and leaving the number of cycles un-
changed – hurdle “cutting”. Other pairs of hurdles are merged by means of an
inversion that decreases the cycle count by one, but also decreases the number
of hurdles by two.

In each case, after the first inversion in a hurdle or pair of hurdles, the
resulting configuration is an oriented component which may be reduced as above.

Unoriented components which are not hurdles will eventually become ori-
ented through inversions operating on other components, and may then be re-
duced accordingly.

Thus the execution of the H-P algorithm involves repeatedly choosing an
oriented cycle and performing an inversion around an oriented gray edge, thus
increasing the number of cycles by one, except for the first inversion whenever
hurdles must be cut or merged. The strategy for our heuristic focuses on the
successive choices of cycles and edges within cycles. The idea is to stop the
reduction of an oriented component when there is no choice of cycle and edge
within the cycle which corresponds to an intragenomic translocation or inversion
(i.e. involving genes from A only or genes from B only). Similarly, if either the
conversion of a hurdle to an oriented component, or the pairing of two hurdles,
corresponds to an intergenomic transfer, it is postponed.

This procedure is validated by the fact that each oriented component may be
reduced independent of whatever inversions apply outside the component. Even-
tually, when no more intragenomic translocations are possible, we have reached
a locally maximum value of nA + nB (local minimum for nG), the postponed
reductions are re-started and the algorithm proceeds to an optimum solution.

3.2 An Upper Bound for the Heuristic

Suppose the decomposition of G(V, E) contains monogenomic oriented compo-
nents C1, · · · , Cr (each involving genes from a single genome only, A or B).

Hybridization and Genome Rearrangement 85

The decomposition may also contain other components. If component Ci has
γCi black edges and κCi cycles, the r components will be reduced by y =∑r

i=1 γCi − κCi inversions. Then

d(H, G) − y ≥ nG,

where nG is the value found by the heuristic.
This bound can be improved in three stages:

– By including, in the calculation of y, at least one monogenomic oriented
cycle (if one exists) contained in each bi-genomic oriented component.

– By including, for each bi-genomic oriented component not satisfying the pre-
vious criterion, an intragenomic inversion (if one exists) around an oriented
gray edge in a bi-genomic oriented cycle.

– By repeating the above steps on certain hurdles whose treatment does not
depend on the previous analysis of other hurdles.

3.3 A Lower Bound for nG

Label the genes in G according to whether they come from A or B as in Section
2, and form segments of contiguous A’s and B’s. Suppose there are b breakpoints
in all. Then at least d b

2e translocations and inversions are required to remove
these breakpoints, and these are necessarily intergenomic. I.e.,

⌈
b
2

⌉ ≤ nG.

4 Hybridization through Interspecific Fertility

Hybrids may be formed by the fertilization event of two distinct though related
species, an accident in nature but often feasible in the laboratory, e.g. [4,7].
The parent species A and B may differ from each other by numerous genome
rearrangements. The hybrid G′ is able to survive and propagate despite the
difference between the two haploid components of its diploid genome. Genome
rearrangement of the hybrid rapidly ensues, however, first until a normal sym-
metric diploid configuration G∗ is attained, and then while further stabilization
of the new genome occurs. This scenario is illustrated in Figure 4. The rapid
evolution of the hybrid means that we can often assume the relative stability of
the parent genomes A and B if the evolutionary scale is not too lengthy.

Suppose that the rearrangements of the hybrid between G′ and G∗ are in-
tragenomic. I.e., the two hybrid genomes “conspire” to reorganize internally to
a common form, before fixing any intergenomic translocations. Then the infer-
ence problem which arises is to find G∗, and the amount of rearrangement which
occurred between G′ and G∗, and between G∗ and the modern genome G.

This is essentially the “median problem” for genomes [6]: Given three genomes
A, B and G, find the “median” G∗ which minimizes the sum of a genomic dis-
tance between G∗ and A, G∗ and B, and G∗ and G. In general, this is a difficult
problem, but in one case, namely when the distance is just the sum of the break-
points between G∗ and each of the other three genomes, an algorithm is available

86 Nadia El-Mabrouk and David Sankoff

??

?

XXXXz
����9

G∗

G

BA

G′

asymmetric
diploid hybrid

normal
diploid

Fig. 4. Rearrangement before and after development of symmetric diploid.

[5], based on a reduction of the median problem to the Traveling Salesman Prob-
lem, which functions well for genomes containing a fairly large number of genes.

In the case where the rearrangements between G′ and G∗ are intergenomic
from the start, it is difficult to propose a general model; unrestricted rearrange-
ments in this context allow, for example, two versions of the same chromoso-
mal segment in one haploid component, and zero in the other, meaning that
the models of meiosis and mitosis underlying genome rearrangement theory no
longer apply.

In the context of hybridization by interspecific fertilization, an additional
type of data may be available. Genome typing informs us which chromosomal
segments originate in which parental species (cf [7]). This pattern derives from
the normal recombination events in the production of gametes. It may or may
not be the case that the genomic position of a segment is correlated with that of
its homologue in the parental species from which it derives. This illustrates the
difference between this mechanism of hybridization and that of Sections 2 and
3, where genome fusion permits the retention of both of a pair of homologous
genes, one from each parent.

Discussion

At least four aspects of the study of hybridization and rearrangement play a role
in determining the nature of inference problem involved:

– The biological mechanism – genome fusion, interspecific fertilization, or other.

– The kinds of data available – present-day genomes, “ancestral” (i.e. stable
or slowly-evolving) genomes, identification of genes in parental species (fusion
model), or of segments (fertilization model).

– Assumptions about relative rates of evolution and about types of rearrange-
ment event permitted.

– The entities to be inferred – events, syntenies, gene orders, beginning of in-
tergenomic translocations.

The more detailed the kinds of data, the more detailed the kind of recon-
struction that is possible, and the less ambiguity (non-uniqueness) in the results.

Hybridization and Genome Rearrangement 87

For example, the analysis in Section 2 generally reconstructs a large number of
optimal solutions, while the one in Section 3 will be less ambiguous.

Each type of problem may require different tools from the inventory of meth-
ods developed in recent years for the study of genome rearrangement.

The most obvious domain of application of these methods is in the plant
kingdom. The genomes of the cereals are particularly well-mapped and some of
these show evidence of hybridization of the genome fusion type. The work of
Rieseberg [4,7] illustrates the possibilities of the analysis in Section 4. As more
genomic data becomes available, our methods should be more widely applicable.

Acknowledgments

Research supported by grants to DS from the Natural Sciences and Engineering
Research Council of Canada and the Canadian Genome Analysis and Technol-
ogy program. DS is a Fellow, and NEM a Scholar, in the Evolutionary Biology
Program of the Canadian Institute for Advanced Research.

References

1. Gaut, B.S., Doebley,J.F.: DNA sequence evidence for the segmental allotetraploid
origin of maize. Proceedings of the National Academy of Science (U.S.A.) 94 (1997)
6809–6814.

2. Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip. (polynomial al-
gorithm for sorting signed permutations by reversals). In: Proceedings of the 27th
Annual ACM-SIAM Symposium on the Theory of Computing (1995) 178–189.

3. Hannenhalli, S., Pevzner, P.A.: Transforming men into mice (polynomial algorithm
for genomic distance problem). In: Proceedings of the IEEE 36th Annual Symposium
on Foundations of Computer Science (1995) 581–592.

4. Rieseberg, L.H, Van Fossen, C., Desrochers, S.M.: Hybrid speciation accompanied
by genomic reorganization in wild sunflowers. Nature 375 (1995) 313–316.

5. Sankoff, D., Blanchette, M.: The median problem for breakpoints in comparative
genomics. In: Computing and Combinatorics, Proceeedings of COCOON ‘97. (T.
Jiang and D.T. Lee, eds) Lecture Notes in Computer Science 1276 Springer Verlag
(1997) 251–263.

6. Sankoff, D., Sundaram, G., Kececioglu, J.: Steiner points in the space of genome
rearrangements. International Journal of the Foundations of Computer Science 7
(1996) 1–9.

7. Ungerer, M.C., Baird, S.J.E., Pan, J., Rieseberg, L.H.: Rapid hybrid speciation in
wild sunflowers. Proceedings of the National Academy of Science (U.S.A.) 95 (1998)
11757–11762.

8. Watterson, G.A., Ewens, W.J., Hall, T.E., Morgan, A.: The chromosome inversion
problem. Journal of Theoretical Biology 99 (1982) 1–7.

On the Complexity of Positional
Sequencing by Hybridization

Amir Ben-Dor 1, Itsik Pe'er% Ron Shamir% and Roded Sharan 2

s Department of Computer Science and Engineering,
University of Washington, Washington, USA.

a m i r b d e c s . w a s h i n g t o n , e d u .
2 Department of Computer Science,
Tel-Aviv University, Tel-Aviv, Israel.

{ i z i k , s h a m i r , r o d e d } e m a t h , t a u . a c . i l .

Abstract. In sequencing by hybridization (SBH), one has to reconstruct a se-
quence from its k-long substrings. SBH was proposed as a promising alternative
to gel-based DNA sequencing approaches, but in its original form the method is
not competitive. Positional SBH is a recently proposed enhancement of SBH in
which one has additional information about the possible positions of each sub-
string along the target sequence. We give a linear time algorithm for solving the
positional SBH problem when each substring has at most two possible positions.
On the other hand, we prove that the problem is NP-complete if each substring
has at most three possible positions.

1 Introduction

Sequencing by hybridization (SBH) was proposed and patented in the late eighties as an
alternative approach to gel-based sequencing [4, 8, 15, 2, 9]. Using DNA chips, cf. [16],
one can in principle determine exactly which k-mers (k-tuples) appear as substrings in
a target that needs sequencing, and try to infer its sequence. Practical values of k are 8
to 10.

The fundamental computational problem in SBH is the reconstruction of a sequence
from its s p e c t r u m - the list of all k-mers that are included in the sequence (along with
their multiplicities). A naive approach to the problem is to look for a Hamiltonian path
in a directed graph whose vertices correspond to k-mers in the spectrum, and two ver-
tices are connected if the (k - 1)-suffix of one equals the (k - 1)-prefix of the other.
This is however a computationally hard problem. Pevzner [10] has shown that the re-
construction problem can be reduced to finding an Eulerian path in another directed
graph, an easily solvable problem. In that graph, vertices correspond to (k - 1)-tuples,
and for each k-tuple in the spectrum, an edge connects the vertices corresponding to its
(k - 1)-long prefix and suffix.

The main handicap of SBH is ambiguity of the solution. Alternative solutions are
manifested as b r a n c h e s in the graph (i.e., two or more edges leaving the same vertex),
and unless the number of branches is very small, there is no good way to determine
the correct sequence. Theoretical analysis and simulations [17, 11] have shown that the

M. Crochemore, M. Paterson (Eds.): CPM'99, LNCS 1645, pp. 88 100, 1999.
@ Springer-Verlag Berlin Heidelberg 1999

On the Complexity of Positional Sequencing by Hybridization 89

average length of a uniquely reconstructible sequence using 8-mer chip is only about
two hundred, way below a single read length on a commercial gel-lane machine.

Due to the centrality of the sequencing problem in biotechnology and in the Human
Genome Project, and due to its mathematical elegance, SBH continues to draw a lot of
attention. Many authors have suggested ways to improve the basic method. Alternative
chip designs [4, 7, 12, 13] as well as interactive protocols [14] were suggested. An
effective and competitive sequencing solution using SBH has yet to be demonstrated.

Recently, several authors have suggested enhancements of SBH based on adding
location information to the spectrum [1, 5, 6]. In positional sequencing by hybridization
(PSBH), additional information is gathered concerning the position of the k-mers in the
target sequence. More precisely, for each k-mer in the spectrum its allowed positions
along the target are registered. The reduction to the Eulerian path problem still applies,
but for each edge in Pevzner’s graph we now have constraints restricting its position
in the Eulerian path. Mathematically, this gives rise to the positional Eulerian path
problem (PEP): Given a directed graph with a list of allowed positions on each edge,
decide if there exists an Eulerian path in which each edge appears in one of its allowed
positions. Hannenhalli et al. [6] showed that PEP is NP-complete, even if all the lists of
allowed positions are intervals of equal length. Note that this leaves open the complexity
of PSBH. They also gave a polynomial algorithm for the problem when the length of
the intervals is bounded.

In this paper we address the positional sequencing by hybridization problem in the
case that the number of allowed positions per k-mer is bounded, and the positions need
not be consecutive. We give a linear time algorithm for solving the positional Eulerian
path problem, and hence, the PSBH problem, in the case that each edge is allowed at
most two positions. On the negative side, we show that the problem of PSBH is NP-
complete, even if each k-mer has at most three allowed positions and multiplicity one.
We use in our hardness proof a reduction from the positional Eulerian path problem
restricted to the case where each edge is allowed at most three positions. The latter
problem is shown to be NP-complete as well.

The paper is organized as follows: In Section 2 we define the PSBH and the PEP
problems. In Section 3 we describe a linear time algorithm for the PEP problem when
each edge has at most two allowed positions. In Section 4 we prove that the PEP prob-
lem is NP-complete if each edge has at most three allowed positions. Finally, we show
in Section 5 that the PSBH problem is NP-complete when each k-mer is allowed at
most three positions. For lack of space, some proofs are omitted.

2 Preliminaries

All graphs in this paper are simple, finite, and directed. Let D = (V, E) be a graph.
We denote m = |E| throughout. For a vertex v ∈ V , we define its in-neighbors to
be the set of all vertices from which there is an edge directed into v. We denote this
set by Nin(v) = {u : (u, v) ∈ E}. We define the in-degree of v to be |Nin(v)|. The
out-neighbors Nout(v) and out-degree are similarly defined.

Let E = {e1, . . . , em} and let P be a function mapping each edge of D to a non-
empty set of integer labels from {1 . . .m} (its allowed positions). We call such a pair

90 Amir Ben-Dor et al.

(D, P) a positional graph. If for all e, |P (e)| ≤ k, then (D, P) is called a k-positional
graph. Let π = π(1), . . . , π(m) be a permutation of the edges in E. If π defines a path,
i.e., for each 1 ≤ i < m, π(i) = (u, v) and π(i + 1) = (v, w), for some u, v, w ∈ V ,
then we say that π is an Eulerian path in D.

An Eulerian path π in D is said to be compliant with the positional graph (D, P) if
π−1(e) ∈ P (e) for each e ∈ E, that is, each edge in π occupies an allowed position.
The k-positional Eulerian path problem is defined as follows:

Problem 1 (k-PEP). Instance: A k-positional graph (D, P).
Question: Is there an Eulerian path compliant with (D, P)?

Let Σ = {A, C, G, T }. The p-spectrum of a string X ∈ Σ∗ is the multi-set of
all p-long substrings of X . The problem of sequencing by hybridization is defined as
follows:

Problem 2 (SBH). Instance: A multi-set S of p-long strings.
Question: Is S the p-spectrum of some string X?

For simplicity, we shall call the input multi-set a spectrum, even if it does not cor-
respond to a sequence. The SBH problem is solvable in polynomial time by a reduction
to finding an Eulerian path in Pevzner’s graph [11]. More specifically, construct a graph
D whose vertices correspond to (p−1)-long substrings of strings in S, and edges are
directed from σ1 . . . σp−1 to σ2 . . . σp for each σ1 . . . σp ∈ S. Then every solution to
the SBH instance naturally corresponds to an Eulerian path in D.

The positional SBH problem is defined as follows:

Problem 3 (PSBH). Instance: A multi-set S of p-long strings. For each s ∈ S, a set
P (s) ⊆ {0, . . . , |S| − 1}.
Question: Is S the p-spectrum of some string X , such that for each s ∈ S its position
along X is in P (s)?

If the set of allowed positions for each string is of size at most k, then the corre-
sponding problem is called k-positional SBH, or k-PSBH. k-PSBH is linearly reducible
to k-PEP in an obvious manner.

3 A Linear Algorithm for 2-Positional Eulerian Path

In this section we provide a linear time algorithm for solving the 2-positional Eulerian
path problem. A key element in our algorithm is reducing the problem to 2-SAT. To this
end, the input is preprocessed, discarding unrealizable edge labels (positions).

Let (D = (V, E), P) be the input 2-positional graph. For every 1 ≤ t ≤ m define
∆(t) to be the set of edges allowed at position t, ∆(t) ≡ {e ∈ E : t ∈ P (e)}. For
every vertex v ∈ V define In(v, t) as the set of t-labeled edges entering v, In(v, t) ≡
{(u, v) : (u, v) ∈ ∆(t)}. Similarly define Out(v, t) ≡ {(v, u) : (v, u) ∈ ∆(t)}.

The first phase of the algorithm applies the following preprocessing step:

while ∃t such that ∆(t) = {e} (∆(t) is a singleton), do:
Suppose P (e) = {t, t′}.
Set ∆(t′)← ∆(t′) \ {e}.
Set P (e)← {t}.

On the Complexity of Positional Sequencing by Hybridization 91

Lemma 1. The preprocessing step does not change the set of Eulerian paths compliant
with (D, P).

When implementing this step, we maintain current P (e) for each e, and ∆(t) for
each t. If at any stage we discover that some set ∆(t) is empty, then we output False and
halt, since no edge can be labeled t. The preprocessing phase can be implemented in
linear time. We omit further details. In the following we denote by (D, P) the positional
graph obtained after the preprocessing phase. The notation ∆ refers to the resulting
instance as well.

Lemma 2. In (D, P) each position is allowed for at most two edges.

Proof. The preprocessing ensures that if for some position t, |∆(t)| = 1, then e ∈ ∆(t)
satisfies |P (e)| = 1. Let R be the set of positions t with |∆(t)| = 1, and let r = |R|.
Then there are m − r positions t for which |∆(t)| ≥ 2, and r′ ≥ r edges e with
|P (e)| = 1. Thus,

2(m−r) ≤
∑

t6∈R

|∆(t)| =
∑

t

|∆(t)|−r =
∑

e

|P (e)|−r = 2m−r′−r ≤ 2(m−r) .

Hence, r = r′ and each label t 6∈ R occurs exactly twice, implying that |∆(t)| ∈ {1, 2}
for all t.

We say that vertex v is fixed to position t in (D, P) if In(v, t) = ∆(t) or Out(v, t+
1) = ∆(t+1). That is, any Eulerian path compliant with (D, P) must visit v at position
t. Define Boolean variables Xt

e for all t ∈ P (e) (
∑

e |P (e)| = 2m−r variables in total).
Define now the following sets of Boolean clauses:

Xt
e for every e ∈ E where P (e) = {t} . (1)

Xt
e1
⊕Xt

e2
for every t 6∈ R where ∆(t) = {e1, e2} . (2)

Xt1
e ⊕Xt2

e for every e ∈ E where P (e) = {t1, t2} . (3)

Xt
(a,b) ⇔ Xt+1

(b,c) for every t ∈ P ((a, b)), (t + 1) ∈ P ((b, c)), b is not fixed to t .(4)

X
t

(u,v) for every t ∈ P ((u, v)), t < m, s.t. Out(v, t + 1) = ∅ . (5)

X
t

(u,v) for every t ∈ P ((u, v)), t > 1, s.t. In(u, t− 1) = ∅ . (6)

Lemma 3. There is a positional Eulerian path compliant with (D, P) iff the set of
clauses (1)-(6) is satisfiable.

Proof. Suppose that a satisfying truth assignment Φ exists. We shall assign an edge e
to position t iff Φ(Xt

e) =True. Clauses (1) and (2) guarantee that exactly one edge is
assigned to each position. Clauses (1) and (3) guarantee that each edge is assigned to
exactly one position, and that this position is allowed to the edge.

It remains to show that the above assignment of edges to positions yields a path in
D. Suppose to the contrary that both Xt

(a,b) and Xt+1
(b′,c′) are assigned True, with b 6= b′.

Then clauses (5) guarantee the existence of an edge (b, c) ∈ ∆(t+1), while clauses (6)

92 Amir Ben-Dor et al.

guarantee the existence of an edge (a′, b′) ∈ ∆(t). Therefore, b is not fixed to t, and
a contradiction follows from clauses (4). Hence, Φ defines an Eulerian path compliant
with (D, P).

The converse can be shown in a similar way.

Theorem 1. 2-PEP is solvable in linear time.

Proof. The preprocessing phase is linear. By Lemma 2 the number of clauses (1)-(6) is
O(m). Each XOR clause in (2)-(3) and each equivalence clause in (4) can be written as
two OR clauses. Moreover, one can generate all clauses in linear time. By Lemma 3 the
problem is reduced to an instance of 2-SAT which is solvable in linear time [3].

Corollary 1. 2-PSBH is solvable in linear time.

4 3-Positional Eulerian Path Is NP-Complete

In this section we prove that the 3-PEP problem is NP-complete by reduction from
3-SAT.

Theorem 2. The 3-PEP problem is NP-complete

Proof. Membership in NP is trivial. We prove NP-hardness by reduction from 3-SAT.
Let F be a 3-CNF formula with N variables x1, . . . , xN , and M clauses C1, . . . , CM .
We assume, w.l.o.g., that each clause contains three distinct variables, and that all 2N
literals occur in F . Denote Xi = {xi} ∪ {xi}. For a literal L ∈ Xi, let aL denote
the number of its occurrences in F . For 1 ≤ j ≤ aL define L(j) ≡ (L, j), thus
L(1), . . . , L(aL) is an enumeration of indices to the occurrences of L in F . For a clause
C = L∨L′∨L′′ introducing the j-th (j′, j′′) occurrence of L (L′, L′′, respectively), we
write C = L(j)∨L′(j′)∨L′′(j′′). We shall construct a directed graph D = (V, E) and
a map P from E to integer sets of size at most 3, such that F is satisfiable iff (D, P)
has a compliant Eulerian path.

4.1 Outline of the Construction

We now provide a sketch of the main parts of the construction. For each occurrence of a
variable in the formula, a special vertex is introduced. Special vertices corresponding to
the same literal form a literal path. Two literal paths of a variable and its negation are
connected in parallel to form a variable subgraph. For each clause in the formula, the
corresponding special vertices are connected by three edges to form a clause triangle.
Finally, for each special vertex we introduce a triangle incident on it, called its bypass
triangle (see figure 1).

The sets of allowed positions are chosen so that they force every compliant Eulerian
path to visit the literal paths one by one. A compliant Eulerian path corresponds to a
satisfying truth assignment. When a special vertex is visited, either its clause triangle,
or its bypass triangle are traversed. Traversing the clause triangle while passing through
a certain literal’s path corresponds to this literal satisfying the clause. We make sure
that for one of xi and xi, no clause triangle is visited while passing through its literal
path. Eventually, we enable visiting all unvisited bypass triangles.

On the Complexity of Positional Sequencing by Hybridization 93

Fig. 1. A schematic sketch of the main elements in our construction. The figure includes
three variable subgraphs, with the first variable (whose subgraph is rightmost) having
three positive occurrences and two negated occurrences, etc. One of the clause triangles
is also drawn, using dashed line.

4.2 Construction in Detail

We introduce the following vertices:

– ui, ûi for each variable xi, 1 ≤ i ≤ N .
– vL(j), v̂L(j) for each occurrence L(j) of the literal L. vL(j) is called special. For

L ∈ Xi, we shall denote ui also by vL(0), and ûi also by vL(aL+1).
– r(Cc) for each clause Cc, 1 ≤ c ≤ M , identifying ûN as r(C0) and u1 as

r(CM+1).

We introduce the following edges:

– For each clause C = L(j) ∨ L′(j′) ∨ L′′(j′′), a clause triangle with the edges
{(vL(j), vL′(j′)), (vL′(j′), vL′′(j′′)), (vL′′(j′′), vL(j))}.

– For each occurrence L(j) of the literal L in the clause C, a bypass triangle with the
edges {(vL(j),v̂L(j)), (v̂L(j), r(C)), (r(C), vL(j))}.

– A literal path lpath(L): (ui, vL(1)), (vL(1), vL(2)), (vL(2),vL(3)),. . . , (vL(aL), ûi),
for each literal L ∈ Xi.

– For i = 1, . . . , N , back edges (ûi, ui); for i = 1, . . . , N − 1, forward edges
(ûi, ui+1).

– A finishing path (ûN , r(C1)), (r(C1), r(C2)), (r(C2), r(C3)), . . . , (r(CM), u1).

Figure 2 shows an example of this constructed graph. The motivation for this con-
struction is the following: Using the position sets, we intend to force the literal paths
of the different variables to be traversed in the natural order, where the only degree of
freedom is switching order between lpath(xi) and lpath(xi). This switch will corre-
spond to a truth assignment for variable xi, by assigning True to the literal in Xi whose
lpath was visited first. After visiting a special vertex along this first path, we either
visit its clause triangle, or its bypass triangle. Along the other path (the one of the literal
assigned False) only a bypass triangle can be visited.

94 Amir Ben-Dor et al.

Eventually, the finishing path is traversed. Its vertices are visited in the natural order.
Upon visiting a vertex r(C), we visit only one bypass triangle - the yet unvisited triangle
among those corresponding to the literals of clause C.

We now describe the sets P (e). We will use the following notation:

bi = axi + axi
for i = 1, . . . , N .

Bi =
i∑

j=1

bj for i = 0, . . . , N (B0 = 0) .

BaseL = BaseL = Basei = 4Bi−1 + 4(i− 1) for L ∈ Xi .

AlternateL = Basei + 4aL + 2 for L ∈ Xi .

ClauseBasec = BaseN+1 + 4c .

Bypass triangle

Finishing path

Clause triangle

Back edges

Forward edges

Literal path

vx1(1)

û1u2

r(C1)

r(C2)

u3

vx2(1)

vx2(1)

u1

Legend:

r(C1)

v̂x1(1)

vx1(2)

û2û3

Fig. 2. An example of the construction for the formula (x1 ∨x2 ∨x3)∧ (x1 ∨x2 ∨x3).
All large grey (black) vertices are actually the same vertex r(C1) (r(C2)).

– For each forward edge e = (ûi−1, ui), 2 ≤ i ≤ N , we set P (e) = {Basei}.
This is intended to ensure that the literal paths are traversed in a constrained order:
lpath(xi) and lpath(xi) are allocated a time interval [Basei + 1, Basei+1 − 1] of
length 4bi + 3, during which they must be traversed.

On the Complexity of Positional Sequencing by Hybridization 95

– For each back edge e = (ûi, ui) we set P (e) = {Alternatexi, Alternatexi
}. This

enables either visiting lpath(xi) first, then e and lpath(xi), or visiting lpath(xi)
first, followed by e and lpath(xi).

– For each literal path edge e = (vL(j), vL(j+1)), with L ∈ Xi, 0 ≤ j ≤ aL, we set
P (e) = {Basei + 4j + 1, AlternateL + 4j + 1}. Consecutive edges in a literal
path are thus positioned 4 time units apart (allowing a triangle in-between).

– For each clause C = L1(j1) ∨ L2(j2) ∨ L3(j3) with the clause triangle {e1 =
(vL1(j1), vL2(j2)), e2 = (vL2(j2), vL3(j3)), e3 = (vL3(j3), vL1(j1))} such that Lk ∈
Xik

, define tk = Baseik
+ 4jk − 2 and set

P (e1) = {t1, t3 + 1, t2 + 2} ,

P (e2) = {t2, t1 + 1, t3 + 2} ,

P (e3) = {t3, t2 + 1, t1 + 2} .

This means that the edges of a clause triangle must be visited consecutively during
the traversal of lpath(Lk), for some k. Furthermore, note that this may happen only
if lpath(Lk) is traversed immediately after time BaseLk

, that is, only if it precedes
lpath(Lk) (see figure 3).

3

21

e3[t3, t2 + 1, t1 + 2] e2[t2, t1 + 1, t3 + 2]

e1

[t1, t3 + 1, t2 + 2]

Fig. 3. A clause triangle, with vertex vLk(jk) denoted by k. The allowed positions for
each edge appear in brackets.

– For each finishing edge e = (r(Cc), r(Cc+1)), 0 ≤ c ≤ M , we set P (e) =
{ClauseBasec}, thus determining the order in which the vertices of the finishing
path are visited, allowing a time slot [ClauseBasec + 1, ClauseBasec+1 − 1] of
length 3, for the bypass triangle visited while traversing r(Cc).

– For a bypass triangle with the edges {e = (vL(j), v̂L(j)), e′ = (v̂L(j), r(Cc)),
e′′ = (r(Cc), vL(j))}, we set:

P (e) = {BaseL + 4j − 2, AlternateL + 4j − 2, ClauseBasec + 2} ,

P (e′) = {BaseL + 4j − 1, AlternateL + 4j − 1, ClauseBasec + 3} ,

P (e′′) = {BaseL + 4j, AlternateL + 4j, ClauseBasec + 1} .

This means that the bypass triangle edges must be visited consecutively, and there
are three possible time slots for that:

96 Amir Ben-Dor et al.

• While traversing lpath(L), before traversing lpath(L).
• While traversing lpath(L), after traversing lpath(L).
• While traversing r(Cc) along the finishing path.

The reduction is obviously polynomial. We now prove validity of the construction.

⇐ Suppose that F is satisfiable. We will show that (D, P) is a ”yes” instance of the
3-positional Eulerian path problem. Let φ be a truth assignment satisfying F . For
each clause Cc, let Lc(jc) be a specific literal occurrence satisfying Cc.
We describe an Eulerian path π in D. Set π(ClauseBasec) = (r(Cc), r(Cc+1)),
for c = 0, . . . , M . Set π(Basei) = (ûi−1, ui), for i = 2, . . . , N . For all i, if
φ(xi) =True, set π(Alternatexi

) = (ûi, ui). Otherwise, set π(Alternatexi) =
(ûi, ui).
For each literal L ∈ Xi:
• If φ(L) =True: For each 0 ≤ j ≤ aL, set π(Basei+4j+1) = (vL(j), vL(j+1))

(see figure 4, top).

True: BaseL + 4j + 1 BaseL + 4j − 3

False: AlternateL + 4j + 1
vL(j)

AlternateL + 4j − 3

Fig. 4. Either a clause triangle or a bypass triangle must be traversed upon visiting a
special vertex vL(j), due to time constraints. Edge positions in case L is assigned True
(False) are shown at the top (bottom).

We further distinguish between two cases:
∗ If L(j) = Lc(jc) for the clause Cc = L(j) ∨ L′(j′) ∨ L′′(j′′) in which

L(j) occurs, then set π to visit the edges of the clause triangle of Cc as
follows:

π(BaseL + 4j − 2) = (vL(j), vL′(j′)) ,

π(BaseL + 4j − 1) = (vL′(j′), vL′′(j′′)) ,

π(BaseL + 4j) = (vL′′(j′′), vL(j)) .

Furthermore, in this case we set π to visit the edges of the bypass triangle
of L(j) as follows:

π(ClauseBasec + 1) = (r(Cc), vL(j)) ,

π(ClauseBasec + 2) = (vL(j), v̂L(j)) ,

π(ClauseBasec + 3) = (v̂L(j), r(Cc)) .

On the Complexity of Positional Sequencing by Hybridization 97

∗ Otherwise, L(j) 6= Lc(jc) for the clause Cc in which L(j) occurs. In this
case we set π to visit the edges of the bypass triangle of L(j) as follows:

π(BaseL + 4j − 2) = (vL(j), v̂L(j)) ,

π(BaseL + 4j − 1) = (v̂L(j), r(Cc)) ,

π(BaseL + 4j) = (r(Cc), vL(j)) .

• If φ(L) =False: For each 0 ≤ j ≤ aL, set π(AlternateL + 4j + 1) =
(vL(j), vL(j+1)). Furthermore, in this case we set π to visit the edges of the
bypass triangle of L(j) as follows (see figure 4, bottom):

π(AlternateL + 4j − 2) = (vL(j), v̂L(j)) ,

π(AlternateL + 4j − 1) = (v̂L(j), r(Cc)) ,

π(AlternateL + 4j) = (r(Cc), vL(j)) .

Examining all the cases shows that π is a permutation of the edges, and if π(k) =
(u, v),π(k + 1) = (u′, v′) then v = u′. Hence, π is an Eulerian path. Furthermore,
by our construction π is compliant with (D, P), proving that (D, P) is a ”yes”
instance.

⇒ Let π be an Eulerian path compliant with (D, P). We shall construct an assign-
ment φ satisfying F . In order to determine φ(xi) we consider the edge π(Basei +
1). By construction, π(Basei + 1) = (ui, vL(1)) for L ∈ Xi. We therefore set
φ(L) =True (and of course φ(L) =False). We observe that for any other edge
e′ = (vL(j), vL(j+1)) along lpath(L), we must have π(Basei + 4j + 1) = e′ iff
φ(L) =True.
We now prove that φ satisfies each clause Cc = L1(j1)∨L2(j2)∨L3(j3) in F . Con-
sider the clause triangle of Cc: {e1 = (vL1(j1), vL2(j2)), e2 = (vL2(j2), vL3(j3)),
e3 = (vL3(j3), vL1(j1))}. Denote tk = BaseLk

+4jk−2. Suppose that π−1(ek) 6=
tk, for some 1 ≤ k ≤ 3, then by the positional constraints the edge visited prior
to ek must be in the clause triangle. Therefore, there exists some 1 ≤ k ≤ 3
for which π(tk) = ek. Furthermore, the edge e preceding ek in π must have
tk − 1 = BaseLk

+ 4(jk − 1) + 1 ∈ P (e). The only such edge entering vLk(jk) is
the literal path edge (vLk(jk−1), vLk(jk)). Therefore, φ(Lk) =True, satisfying Cc.

This proves that F is satisfiable iff (D, P) is a ”yes” instance, completing the proof
of Theorem 2.

Observe that the graph constructed in the proof of Theorem 2 has in-degree and
out-degree bounded by 4, giving rise to the following result:

Corollary 2. 3-PEP is NP-complete, even when restricted to graphs with in-degree and
out-degree bounded by 4 .

Henceforth, we call this restricted problem (3,4)-PEP. We comment that a slight
modification of the construction results in a graph whose in-degree and out-degree are
bounded by 2.

98 Amir Ben-Dor et al.

5 3-Positional SBH Is NP-Complete

We show in this section that the problem of sequencing by hybridization with at most
3 positions per spectrum element is NP-complete, even if each element in the spectrum
is unique. The proof is by reduction from (3,4)-PEP.

Theorem 3. The 3-PSBH problem is NP-complete, even if all spectrum elements are of
multiplicity one.

Proof. It is easy to see that the problem is in NP. We reduce (3,4)-PEP to 3-PSBH. Let
(D = (V, E), P) be an instance of (3,4)-PEP. Let k = dlog4 |V |e+ 2, p = 3k + 1 and
c = p + 1. In order to construct an instance of 3-PSBH we first encode the edges and
vertices of D. In the following, we denote string concatenation by |. We let σ1 =’A’,
σ2 =’C’, σ3 =’G’ and σ4 =’T’.

For each v ∈ V we assign a unique string in Σk−2. We add a leading ’T’ symbol
and a trailing ’T’ symbol to this string, and call the resulting k-long sequence the name
of v. We also assign the (unique) sequence ’A. . . A’ of length k to encode a space. Each
vertex is encoded by a 3k-long sequence containing two copies of its name separated by
a space. We denote the encoding of v by en(v). Each edge (u, v) ∈ E is encoded by two
symbols chosen as follows: Let Nout(u) = {v1, . . . , vl}, where v = vi for some i, and
l ≤ 4. Let Nin(v) = {u1, . . . , ur}, where u = uj for some j, and r ≤ 4. Then (u, v)
is encoded by σi|σj , and we denote its encoding by en(u, v). We let EN((u, v)) =
en(u)|en(u, v)|en(v) (see figure 5).

A A ATT

The name of v

TT

The name of v

unique sequence

space

unique sequence

σi σjen(v) en(u)

Fig. 5. The encoding of vertices and edges into strings.

We now construct a 3-PSBH instance, i.e., a set S with position constraints T , as
follows: For every edge (u, v) ∈ E the set S contains all p-long substrings of the 2p-
long sequence EN((u, v)) (c substrings in total). Let si

(u,v) denote the i’th substring,
i = 0, . . . , p. Let P ((u, v)) = {t1, . . . , tl}, 1 ≤ l ≤ 3, be the set of allowed positions
for (u, v). Then we set T (si

(u,v)) = {c(t1−1)+ i, . . . , c(tl−1)+ i} for all i (substring
positions are 0-up).

On the Complexity of Positional Sequencing by Hybridization 99

Lemma 4. Each of the p-long substrings defined above is unique.

Proof. Suppose that s = si
(u,v) = sj

(w,z). We first claim that i = j. There are two cases
to examine: If s contains a space at positions r, . . . , r + k − 1, 0 ≤ r ≤ 2k + 1, then
i = j = (c+k−r) (mod c). Otherwise, s begins with a run of ’A’ symbols of length
0 ≤ r′ ≤ k− 1. This run belongs to a space in en(u) and en(w), and must be followed
by the symbol ’T’. In this case i = j = 2k − r′.

By construction, s contains a name of a vertex plus a unique symbol identifying an
edge entering or leaving that vertex, implying that (u, v) = (w, z).

We now show the validity of the reduction.

⇐ Suppose that π = (v0, v1), (v1, v2), . . . , (vm−1, vm) is a solution of the (3,4)-PEP
instance. We claim that X = en(v0)|en((v0, v1))|en(v1)|en((v1, v2))|. . . |en(vm)
is a solution of the 3-PSBH instance. By Lemma 4 each p-long substring of X
occurs exactly once in X . As π visits all edges in D, we have that S is the p-
spectrum of X . The fact that position constraints are obeyed follows directly from
the construction.

⇒ Let X be a solution of the 3-PSBH instance. Consider the m substrings of length p,
whose starting positions are integer multiples of c. By the position constraints, the
r-th such substring is an encoding of some vertex vr, followed by a symbol σir . De-
note by wr the ir-th out-neighbor of vr. We prove that π = (v1, w1), . . .,(vm, wm)
is an Eulerian path compliant with (D, P).
Since each string in the p-spectrum of X is unique, π is a permutation of the edges
in D. To prove that π is a path in D we have to show that wr = vr+1 for r =
1, . . . , m − 1. Let x be the p-long substring of X starting at position rc + 2k.
We observe that x must begin with the last k symbols of en(vr), which compose
name(vr), followed by σir , some symbol, and the first 2k−1 symbols of en(vr+1),
which contain name(vr+1). The uniqueness of name(vr), name(vr+1) and the
index ir among the out-neighbors of vr, implies that wr = vr+1. The claim now
follows, since position constraints are trivially satisfied by π.

Acknowledgments

The first author was supported by the program for mathematics and molecular biology.
The second author was supported by the Clore foundation scholarship. The third author
was supported in part by a grant from the Ministry of Science, Israel. The fourth author
was supported by Eshkol scholarship from the Ministry of Science, Israel.

References

[1] L. M. Adleman. Location sensitive sequencing of DNA. Technical report, University of
Southern California, 1998.

[2] R. Drmanac amd R. Crkvenjakov, 1987. Yugoslav Patent Application 570.
[3] B. Apsvall, M. F. Plass, and R.E. Tarjan. A linear-time algorithm for testing the truth of

certain quantified boolean formulas. Information Processing Letters, 8(3):121–123, 1979.

100 Amir Ben-Dor et al.

[4] W. Bains and G. C. Smith. A novel method for nucleic acid sequence determination. J.
Theor. Biology, 135:303–307, 1988.

[5] S. D. Broude, T. Sano, C. S. Smith, and C. R. Cantor. Enhanced DNA sequencing by
hybridization. Proc. Nat. Acad. Sci. USA, 91:3072–3076, 1994.

[6] S. Hannenhalli, P. Pevzner, H. Lewis, and S. Skiena. Positional sequencing by hybridiza-
tion. Computer Applications in the Biosciences, 12:19–24, 1996.

[7] K. R. Khrapko, Yu. P. Lysov, A. A. Khorlyn, V. V. Shick, V. L. Florentiev, and A. D.
Mirzabekov. An oligonucleotide hybridization approach to DNA sequencing. FEBS letters,
256:118–122, 1989.

[8] Y. Lysov, V. Floretiev, A. Khorlyn, K. Khrapko, V. Shick, and A. Mirzabekov. DNA se-
quencing by hybridization with oligonucleotides. Dokl. Acad. Sci. USSR, 303:1508–1511,
1988.

[9] S. C. Macevics, 1989. International Patent Application PS US89 04741.
[10] P. A. Pevzner. l-tuple DNA sequencing: computer analysis. J. Biomol. Struct. Dyn., 7:63–

73, 1989.
[11] P. A. Pevzner and R. J. Lipshutz. Towards DNA sequencing chips. In Symposium on

Mathematical Foundations of Computer Science, pages 143–158. Springer, 1994. LNCS
vol. 841.

[12] P. A. Pevzner, Yu. P. Lysov, K. R. Khrapko, A. V. Belyavsky, V. L. Florentiev, and A. D.
Mirzabekov. Improved chips for sequencing by hybridization. J. Biomol. Struct. Dyn.,
9:399–410, 1991.

[13] F. Preparata, A. Frieze, and Upfal E. On the power of universal bases in sequencing by
hybridization. In Proceedings of the Third Annual International Conference on Computa-
tional Molecular Biology (RECOMB ’99), pages 295–301, 1999.

[14] S. S. Skiena and G. Sundaram. Reconstructing strings from substrings. J. Comput. Biol.,
2:333–353, 1995.

[15] E. Southern, 1988. UK Patent Application GB8810400.
[16] E. M. Southern. DNA chips: analysing sequence by hybridization to oligonucleotides on a

large scale. Trends in Genetics, 12:110–115, 1996.
[17] E. M. Southern, U. Maskos, and J. K. Elder. Analyzing and comparing nucleic acid se-

quences by hybridization to arrays of oligonucleotides: evaluation using experimental mod-
els. Genomics, 13:1008–1017, 1992.

GESTALT: Genomic Steiner Alignments

Giuseppe Lancia?1 and R. Ravi??2

1 Dipartimento Elettronica ed Informatica, University of Padova,
lancia@dei.unipd.it

2 GSIA, Carnegie Mellon University,
ravi@cmu.edu

Abstract. We describe GESTALT (GEnomic sequences STeiner ALign-
menT), a public–domain suite of programs for generating multiple align-
ments of a set of biosequences. We allow the use of either of the two popu-
lar objectives, Tree Alignment or Sum-of-Pairs. The main distinguishing
feature of our method is that the alignment is obtained via a tree in
which the internal nodes (ancestors) are labeled by Steiner sequences
for triples of the input sequences. Given lists of candidate labels for the
ancestral sequences, we use dynamic programming to choose an optimal
labeling under either objective function. Finally, the fully labeled tree of
sequences is turned into into a multiple alignment. Enhancements in our
implementation include the traditional space-saving ideas of Hirschberg
as well as new data-packing techniques. The running-time bottleneck of
computing exact Steiner sequences is handled by a highly effective but
much faster heuristic alternative. Finally, other modules in the suite al-
low automatic generation of linear-program input files that can be used
to compute new lower bounds on the optimal values. We also report on
some preliminary computational experiments with GESTALT.

1 Introduction

Comparing genomic sequences drawn from individuals of the same or different
species is one of the fundamental problems in computational molecular biology.
These comparisons can (i) lead to the identification of highly conserved (and
therefore presumably functionally relevant) genomic regions, (ii) spot fatal mu-
tations, (iii) suggest evolutionary relationships, (iv) help in correcting sequencing
errors etc. Therefore, the mathematical formulation and solution of the Multiple
Sequence Alignment problem has been and remains a fundamental challenge for
computational molecular biologists.

Aligning a set of sequences consists in arranging them in a matrix having
each sequence in a row. This is obtained by possibly inserting spaces (gaps) in
each sequence so that they all have the same length. The following is a simple
example of an alignment of the sequences ATTCGAC, TTCCGTC and ATCGTC.

? Most of this work was done when this author was visiting CMU during Summer ’98,
under a grant from the CMU Faculty Development Fund.

?? Supported in part by an NSF CAREER grant CCR-9625297

M. Crochemore, M. Paterson (Eds.): CPM’99, LNCS 1645, pp. 101–114, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

102 Giuseppe Lancia and R. Ravi

A T T - C G A - C
- T T C C G - T C
A - T - C G - T C

There are many popular formulations of the alignment problem. The choice
of the objective function for multiple alignments depends mainly on the presence
or absence of extra input information in the form of a phylogenetic tree relating
the sequences to their unknown ancestors. In fact, when such tree is given,
knowledge of the ancestral sequences would imply the possibility of aligning the
given sequences by progressively aligning each sequence to its ancestor in the
tree all the way to the root and chaining these pairwise alignments together [6].
Hence when a phylogeny is given, the tree alignment (TA) objective consists in
finding the best ancestral sequences to label this tree and deriving the induced
alignment. Guided by parsimony, the best labeling is taken to be one minimizing
the total evolutionary change represented in the tree, namely, the total distance
of all the edges in the tree. When the phylogenetic tree is not available, a popular
multiple alignment objective is the Sum–of–pairs (SP) objective, which attempts
to minimize the average distance between a pair of sequences in the multiple
alignment. This objective results naturally by extending the alignment objective
for pairs of sequences, namely, that of minimizing the edit-distance between the
pair, to more than two sequences. The SP objective has been popular in the
literature and several heuristic implementations addressing it proceed by first
finding a heuristic tree spanning the sequences and aligning them progressively
as mentioned earlier to obtain the final alignment.

Historically, the SP objective is the one to which more attention has been
devoted by computational biologists, and correspondingly a set of programs have
been developed which are now widely in use. Among them, the only program
that computes optimal SP alignments is MSA by Lipman, Altschul, Kececioglu,
Gupta and Schaeffer [2,8]. A variety of other multiple sequence alignment pro-
grams implicitly use the SP objective in guiding heuristic construction of the
multi-alignments: An example is CLUSTAL V [11] (see also the various meth-
ods described in the surveys [16,5] for other examples). As for tree alignment,
the only implementation that addresses this problem directly that we are aware
of is the recent TAAR by Jiang and Liu [13]. This program implements some
of the ideas from the approximation algorithms of Jiang, Lawler and Wang [27]
to heuristically compute tree alignments, phylogenies and generalized tree align-
ments.

In this paper we introduce and describe a new public–domain suite of pro-
grams for multiple sequence alignment that produce heuristic alignments under
both the TA and SP alignment objectives. Like TAAR, Our methods are based
on ideas used in an approximation algorithm for tree alignment due to Ravi and
Kececioglu [17]. However, unlike the methods of Jiang, Lawler and Wang [27]
on which TAAR is based, whose refined heuristics require very high running
times, the ideas of Ravi and Kececioglu are based on mainly computing and us-
ing Steiner sequences as candidates for the unlabeled ancestral sequences in the
tree. Intuitively, a Steiner sequence for a given set of sequences is a “central” se-
quence to them, one whose sum of distances to all these sequences is minimized.

GESTALT: Genomic Steiner Alignments 103

Once these Steiner sequences for appropriate subsets of the input sequences have
been computed, dynamic programming can be used to efficiently pick one such
sequence for each ancestral node so as to minimize the total resulting distance in
the tree, as in [27]. Thus, this method is adaptable for efficient implementation
giving us the freedom to specify the subsets of sequences for which the Steiner
sequences must be computed. Further, we can effectively adapt this general idea
by modifying the dynamic program to provide an efficient heuristic even for the
SP objective using the postulated Steiner ancestors.

Further refinements in our implementation include incorporating the tradi-
tional space-saving ideas of Hirschberg [12] as well as some new data-packing
techniques to reduce the space overhead; The running-time bottleneck in our
method of computing exact Steiner sequences is effectively handled by a much
faster heuristic alternative that has never shown more than two percent degra-
dation in quality in our extensive preliminary testing. Finally, other programs in
the suite allow automatic generation of linear-programming models as files that
can be input to the popular commercial CPLEX package. The solution of these
programs give lower bounds on the minimum TA and SP alignment values for
the given set of sequences, thus providing the deviations from optimality on a
case-by-case basis.

We formally describe the various objectives and methods in the remainder
of this section. In Sect. 2 we give a high–level description of the algorithms in
GESTALT, together with an analysis of the individual steps. In Sect. 3 we report
on some experimental results on real data.

1.1 Edit Distance

At the heart of any alignment algorithm lies the procedure for optimally com-
paring two given sequences. This problem is called pairwise alignment, and is
formulated as follows. Given symmetric costs c(a, b) for replacing a symbol a with
a symbol b and costs c(a,−) for deleting (inserting) symbol a, find a minimum–
cost set of symbol operations that turn a sequence S′ into a sequence S′′. It is
well known that this problem can be solved by dynamic programming in time
and space O(l2), where l is the length of the sequences. The value of an optimal
solution is called the edit distance of S′ and S′′ and denoted by d(S′, S′′).

An alignment A of two (or more) sequences is a way of inserting “−” char-
acters (gaps) in the sequences so that the resulting sequences have the same
length. For two sequences S′ and S′′, the value dA(S′, S′′) of their alignment
is obtained by adding up the costs for the pairs of characters in corresponding
positions. It is immediate that d(S′, S′′) = minA dA(S′, S′′).

1.2 The Sum–of–Pairs Alignment Problem

The SP score is the generalization to many sequences of the pairwise alignment
objective, in which the cost of the alignment is obtained by adding the costs
of the symbols matched up at the same positions. Analogously, in a multiple

104 Giuseppe Lancia and R. Ravi

alignment the cost is obtained by adding up the matching characters, over all
the positions and for all the pairs of sequences.

Minimizing SP is NP-hard [26]. In [9] Gusfield showed that a tree-based
progressive alignment method due to Feng and Doolittle (described below) using
the minimum cost star gives a 2–approximation. In the program described in this
paper we push this idea further, by considering also trees that are not only stars
and also employing alignments with sequences which are not in the original set,
but are derived from it as Steiner sequences of some of the original ones.

1.3 The Tree Alignment Problem

In the tree alignment problem, we are given n sequences related by an evolu-
tionary tree T . The sequences label the leaves of the tree, while the internal
nodes correspond to the unknown ancestral sequences from which the others
have evolved. The problem consists in finding the sequences at the internal nodes
which minimize the cost of the tree, defined as

∑
(Si,Sj)∈T d(Si, Sj). When T is

a star, the problem is called a Steiner problem, and the optimal sequence for the
center is called the Steiner sequence for the leaves.

The first exact algorithm for tree alignment was proposed by Sankoff in [18],
and is based on dynamic programming. Later Altschul and Lipman [1] introduced
some bounding rules to reduce the size of the dynamic programming lattice.
Due to the prohibitive worst case complexity of exact methods, approximation
algorithms for this problem were devised, by Jiang, Lawler and Wang [27] first,
and improved by Wang and Gusfield [25] later. In [27] a 2–approximation method
is described, based on what are called lifted alignments. In lifted alignments, the
internal nodes can only be labeled by sequences occurring at the leaves. The
running time of their algorithm is O(n2l2 + n3) for a tree of n leaves of length l.
For trees of bounded degree d, they also provided the first PTAS for the problem.
For any t, their approximation scheme guarantees a solution within a factor 1+ 3

t

of optimal, in time O(n2+dt−1
ld

t−1−1/d−1).
For regular d–ary trees on n sequences, Ravi and Kececioglu gave in [17] a

d+1
d−1–approximation algorithm with running time roughly (O(2kn)d) – the main
ideas of their algorithm are briefly described in Sect. 2. The program GESTALT
described in this paper is the first implementation of the ideas in [17].

1.4 A Tree-Based Progressive Alignment Method

A reasonable requirement on the cost function is that c(a, a) = 0 ∀a, and it
obeys triangle inequality. In this case, the edit distance induces a metric over
the space of all sequences and, given n sequences, we can talk of graphs having
the sequences as vertices and for which an edge is weighted by the edit distance
between the endpoints. In this setting, graph theoretical concepts such as span-
ning trees, stars and Steiner points, have been widely used in the design and
analysis of effective alignment algorithms. In particular, a folklore approach to
multiple alignments is due to Feng and Doolittle [6] and shows how we can use

GESTALT: Genomic Steiner Alignments 105

any tree to align a set of n sequences. The appeal of the approach is that for
n− 1 out of n(n− 1)/2 pairs, the pairwise alignment induced is in fact optimal.

Proposition 1. For any tree T over a set of sequences, there exists a multiple
alignment A(T) of the sequences such that dA(T)(S′, S′′) = d(S′, S′′) for all the
pairs of sequences (S′, S′′) connected by an edge of the tree.

Feng and Doolittle’s method can be used to turn the solution of the tree
alignment problem, namely a labeling of the internal nodes of the given tree,
into a multiple alignment of the leaves. Moreover, it is straightforward to upper
bound the distance in this alignment of pairs that are not endpoints of a tree
edge. In fact, denote by d(S′, S′′, T) the length of the path in T between two
sequences S′ and S′′. Then, by triangular inequality we have that dA(T)(S′, S′′) ≤
d(S′, S′′, T). This inequality suggests that, given a tree with sequences at the
leaves for which we want to minimize average pairwise distance in the resulting
multiple alignment, a good labeling for the internal nodes is one which minimizes
the total inter-leaf distance in the tree. This strategy is adopted in this work to
obtain alignments of small SP value, as described in 2.3.

1.5 GESTALT Program Suite

In this paper we describe the program GESTALT (GEnomic sequences STeiner
ALignmenT), which can be used for both TA and SP multiple alignments.
GESTALT is in fact a program suite, including modules for computing LP-based
lower bounds for TA and SP, and optimal alignments of two or three sequences.

The main program takes as input a set L = {S1, . . . , Sn} of n sequences
and possibly a tree T of which L are the leaves. If the phylogenetic tree is not
available, the algorithm internally computes one, which is then used to find
an alignment of small SP value. If the tree is given, then the TA objective is
optimized1. The output of the algorithm consists of a multiple alignment of
the input sequences, plus some extra information, such as the Steiner sequences
computed at the internal nodes of the phylogenetic tree.

GESTALT is based on the ideas introduced by Ravi and Kececioglu in [17] of
using Steiner sequences of the leaves to label the internal nodes of the tree. While
in their paper Ravi and Kececioglu show that if the tree is d–ary the method gives
a d+1

d−1 approximation for TA, in our work we do not restrict the degree of each
node to a constant. Therefore we do not have the same approximation guarantee.
However, among all the labelings considered is included the best lifted labeling
of [27] and therefore we still have a performance guarantee of 2 for the TA
objective. As is typically the case, this bound turns out to be largely pessimistic
and our computational results show that the algorithm performs much better in
practice.

The 2–approximation guarantee holds also for the SP alignments we output.
Recall that we include, among all the labelings considered, one in which the
1 The choice of the objective in the presence or absence of the tree can also be user-

specified

106 Giuseppe Lancia and R. Ravi

internal nodes of the tree are all labeled with any leaf S. For this particular
labeling, the resulting tree is equivalent to a star centered at S, and as remarked
before [9], the best star centered at a leaf gives a 2–approximation.

2 Procedure Overview

Our program is largely based on a heuristic procedure by Ravi and Kececioglu
([17]) for solving the tree alignment problem. Their algorithm relies on labeling
the internal nodes with Steiner sequences for subsets of p leaves, where p is a
parameter. The procedure is divided in two phases. In the first phase a Steiner
sequence is computed for every subset of q ≤ p leaves, obtaining a set F of all
such Steiner sequences. In the second phase, dynamic programming is used to
compute the best labeling of the internal nodes among those in which only labels
from F are allowed.

In this work, we have decided to solve the TA problem by employing Ravi
and Kececioglu’s algorithm, with the following variants: (i) Because computing
exact Steiner sequences is expensive, we have limited the size of the subsets
for which a Steiner problem is solved to p = 3. (ii) In addition to Sankoff’s
exact algorithm for Steiner sequences, with complexity O(l3), we also use a
heuristic algorithm, with average (empirical) complexity O(l2). (iii) We do not
necessarily compute the Steiner sequences for all the

(
n
3

)
possible triples of leaves,

but provide alternate, heuristic methods of sampling significant triples. (iv) We
also perform a final re-optimization step, as introduced by Sankoff et al ([20]).

Our program can be used also to optimize SP. In this case, we first compute a
tree having the given sequences for leaves and then assign tentative labels to the
internal nodes by using Steiner sequences, as for the TA objective. In choosing
the best label at each node, however, we use dynamic programming to minimize
the total leaf–to–leaf distance in the tree, which is an upper bound on the final
SP score. A final reoptimization phase can be run to improve the alignment.

The outline of our multiple alignment heuristic procedure is given below.

1. Tree computation.
– TA: none (the tree is given).
– SP: We compute a phylogenetic tree having the given sequences as leaves

- this is derived from a MST on the sequence graph.
2. Solution of Steiner problems. We tentatively assign to each of the internal

nodes of the phylogenetic tree a set of labels, given by the Steiner sequences
of some subsets of the leaves.

3. Optimal labeling by Dynamic Programming. We find for each internal node
the best sequence among those in its set of possible labels.
– TA: The objective is to minimize the total tree-length.
– SP: The objective is to minimize the total leaf–to-leaf distance in the

tree.

GESTALT: Genomic Steiner Alignments 107

4. Local re-optimization.
– TA: At each node of degree three we replace the current sequence by

the Steiner sequence of its neighbors. We iterate as long as there are
improvements.

– SP: (after step 5.) We iteratively break up the alignment into two sub-
alignments that are then realigned optimally. The subalignments chosen
have a large average difference in the current value versus the edit dis-
tance.

5. Final alignment by Feng and Doolittle. We compute a multiple alignment of
all the resulting sequences (both leaves and internal nodes) by the progressive
alignment method of Feng and Doolittle.

We elaborate on some of these steps next.

2.1 Tree Computation

In order to derive a phylogenetic tree T relating a set of sequences when one is
not input, we use a simple greedy approach. We start with T being a minimum
cost spanning tree of the edit distance graph. Let (u, v) be the largest cost edge
of T . Break up T by deleting edge (u, v) into two trees Tu containing u and Tv

containing v. Recursively, apply the same procedure to Tu and Tv, obtaining two
new trees, Tu′ and Tv′ rooted at new nodes u′ and v′ respectively. Finally, join
these two subtrees by means of edges (u′, w) and (v′, w) to a new root node w,
thus obtaining the final phylogenetic tree.

2.2 Solution of Steiner Problems

Choice of Steiner Sequences Given a set of possible sequences (labels) for
each internal node of the tree, choosing the best label is done by dynamic pro-
gramming (described in 2.3) and is very fast in practice. On the other hand,
computing the labels is very expensive. Therefore once some labels have been
computed, it is convenient to store them at every internal node, i.e. all the nodes
will have the same set G of labels. As previously noted, the labels allowed at the
internal nodes will only be Steiner sequences for some subsets of q ≤ 3 leaves.
When q = 1 or 2, a Steiner sequence is simply a leaf, so that it will always be
G = L ∪ G′, where G′ is a set of Steiner sequences for some triples of leaves.
Let us denote by Y (Si, Sj , Sk) a Steiner sequences for the triple (Si, Sj , Sk). We
allow three possibilities for G′:
– G′ = ∅. In this case the internal nodes are labeled with leaves sequences

only. This option results in the fastest running time, but may produce poor
final alignments, especially when the given sequences are very dissimilar.
Note that among the alignments based on these labels are included all lifted
alignments [27] for TA. Similarly, these labels contain also all star alignments
for SP.

108 Giuseppe Lancia and R. Ravi

– G′ = {Y (Si, Sj , Sk) : i < j < k}. This is computationally the most expensive
option, since it requires the solution of

(
n
3

)
Steiner problems. On the other

hand, the larger set of possible labels at the internal nodes guarantees a
better value of the final alignment.

– Let S1, S2, . . . , Sn be the sequence of leaves as encountered by performing
a depth–first visit of the tree. Then, G′ = {Y (Sj , Sk, Sh) : h = k + 1 =
j + 2 or h = k + ∆ = j + 2∆} where ∆ =

⌊
n
3

⌋
. The intention is to heuristi-

cally obtain a uniform sampling by selecting triples of leaves from different
positions in an Euler tour of the tree. This option is quick –there are only
O(n) such triples– but ensures that each sequence is included in some triples,
and that all the sequences are given the same representation in the samples.

Exact Steiner Sequences Assume we are interested in finding a Steiner se-
quence for three sequences U1, U2 and U3. The dynamic programming procedure
computes the optimal alignment of the variable Steiner sequence and U1, U2 and
U3. This is done backwards from the final column of the alignment, which will
be of the form (x1, x2, x3, y)′, where each xi is either the last letter of the se-
quence Ui or a blank (but at least one xi must be nonblank), and y is any
nonblank letter of the alphabet Σ (representing the metter in the Steiner se-
quence being constructed). For any letter x, define 1 · x = x and 0 · x = −. Let
B+ = {0, 1}3 \ (0, 0, 0) be the set of nonnull binary 3–vectors and let V (l1, l2, l3)
be the cost of an optimal Steiner sequence for the the first l1, l2 and l3 characters
respectively of U1, U2 and U3. The recursive dynamic programming relation is
then

V (l1, l2, l3) = min
b∈B+

{
V (l1 − b1, l2 − b2, l3 − b3) + min

y∈Σ

3∑
i=1

c(bi · Ui[li], y)

}

The Steiner sequence is given, as customary in dynamic programming, by
backtracking through the values V (l1, l2, l3) along the path for an optimal so-
lution and listing the letters ŷ = arg min

∑3
i=1 c(bi · Si[li], y) which achieve the

minimum in the above expression. Note that the above recurrence requires time
and space complexity of O(7l3), provided that for all (x1, x2, x3) ∈ Σ3, the val-
ues C(x1, x2, x3) := miny∈Σ

∑3
i=1 c(xi, y) have been computed in a preliminary

step and stored in a look-up table. In our implementation we have reduced the
space complexity to O(l2) for the matrix V (i, j, k) using ideas from [12].

Heuristic Steiner Sequences Computing exact Steiner sequences is very time
consuming. For instance, the solution of a problem on sequences of about 200
letters each takes roughly half minute on a Pentium PC. Considering that for
aligning 10 sequences we may have to solve

(
10
3

)
= 120 such problems, we see that

speeding up the computation of Steiner sequences would be greatly beneficial.
Therefore, we have devised an alternative, heuristic way of computing Steiner

GESTALT: Genomic Steiner Alignments 109

sequences which is extremely fast and turns out to be almost–optimal after
extensive testing (see Sect. 3).

The idea is to first find all optimal alignments of two of the three sequences,
say S1 and S2. They correspond to all the shortest paths from (0, 0) to (|S1|, |S2|)
in the |S1| × |S2| dynamic programming lattice used for the pairwise alignment,
and can be represented in a compact form as the subgraph of the lattice of
all the edges on some optimal path. Note that this subgraph is typically much
smaller than the whole lattice (empirically, O(l) versus O(l2)). Then, we perform
a graph–to–sequence alignment, i.e. we find the best completion of an optimal
alignment of S1 and S2 with S3. In this case, “best” is taken with respect to the
Steiner objective.

The value of the final solution may depend on the ordering of the sequences,
since S3 is clearly used differently than S1 and S2. We have observed in our
experiments that choosing S1 and S2 to be the two closest sequences results
in the best Steiner sequences over the three possible choices. However, since
the algorithm is very fast, we compute all three possibilities of first aligning
together two sequences and then versus the third, and return the best solution
found. We conclude this section by remarking that the computation of heuristic
Steiner sequences takes on the average one second for sequences of length 200,
while returning a solution whose value was never more than 2% larger than the
optimum in our extensive testing.

2.3 Optimal Labeling by Dynamic Programming

In this section we consider the problem of optimally assigning a sequence from
a given set G to each internal node of the tree. Denote by w1, . . . , wt the nodes
which are immediate descendants of a node i. Let V (i, S) be the optimal value
for the subtree rooted at i when node i is labeled with a sequence S ∈ G. We
have the following dynamic programming recurrence:

V (i, S) =
{

0 if i is a leaf
minL1,...,Lt∈G

∑t
j=1 (λ(i, wj)d(S, Lj) + V (wj , Lj)) otherwise

The coefficients λ(i, wj) allow us to distinguish between the two objective
functions - TA and SP. For the TA objective, V (i, S) represents the minimum
total length of the subtree, among the labelings that assigns S to i. This is
obtained by setting all the λ equal to 1. For the SP objective, we want to find
the labels which minimize the total leaf–to–leaf distance. For any edge (u, v) of
T , we set λ(u, v) to be the number of pairs of leaves whose connecting path in
the tree goes through (u, v). This value, called the load of the edge, is equal
to k(n − k), where k is the number of leaves on one shore of the cut identified
by (u, v). By using the loads, the total leaf–to–leaf distance can be rewritten
as

∑
Si,Sj

d(Si, Sj, T) =
∑

(u,v)∈T λ(u, v)d(L(u), L(v)), where L(u) and L(v) are
the sequences labeling nodes u and v.

Using the above relation, first the value of each label at each node is com-
puted bottom–up, and later, proceeding top–down from the root, it is determined

110 Giuseppe Lancia and R. Ravi

which label to pick at each node for obtaining an optimal solution. The overall
complexity is O(n|G|2), i.e. a very fast procedure.

2.4 Reoptimization

The reoptimization for TA objective is the same as in Sankoff et al [20]. For
SP, however, we use a new approach. As in other works (e.g. [7]) we repeatedly
break up the alignment into two pieces that are then realigned optimally via
the basic dynamic program for edit distance. The new idea relies in how these
alignments are chosen. Since for each pair of sequences in the same subalignment
the distance remains the same, the only improvement can be for sequences that
are in different subalignments. Let δ(S, S′) = dA(S, S′) − d(S, S′). If A1 and
A2 are the subalignments, δ(A1,A2) =

∑
S∈A1,S′∈A2

δ(S, S′) is the δ–value of
the cut (A1,A2) in the graph of all sequences, and δ(A1,A2)/|A1||A2| is a per–
sequence measure of how bad the alignment currently is versus the lower bound
given by the edit distance. Hence we want to reoptimize some cuts of high (per–
sequence) value, which we find through standard greedy heuristics. We have
different settings on how far the reoptimization phase can be pushed. In the
most expensive setting, for each pair (S, S′) of sequences we find a large–value
cut separating them and relign it. We iterate as long as there are improvements.

3 Computational Experiences

For our preliminary tests, we used two popular data sets. First, we obtained
the sets of protein sequences of Mc Clure [16], used extensively to benchmark
programs guided by the SP objective. For the Tree Alignment problem, we have
used a famous instance by Sankoff et al [20], used as a benchmark in [10,13].

As for the cost matrix, in our experiments we have used a distance matrix
due to Taylor [23] for amino acid sequences, and the matrix in Sankoff [20] for
DNA sequences. Our program also works with all the common score matrices
(e.g. PAM, BLOSUM, etc).

1. Lower Bounds. A unique feature of the GESTALT suite is a procedure
to generate linear programming (LP) based lower bounds on the TA and SP
objective values of the given instance by using the Steiner sequences for triples
computed so far. We describe the LP for the TA problem. We use a nonnegative
variable for the length of every edge of the tree, and the objective is to minimize
the sum of lengths of all tree edges. A distance of d between a pair of leaves
Si and Sj allows us to add the constraint that the sum of the values of the
edge lengths on the path between Si and Sj in the tree must be at least D.
Similarly, given a value of TA(i, j, k) for the minimum sum of the distances from
an optimal Steiner sequence for the triple (Si, Sj , Sk) to the three sequences
Si, Sj and Sk, we add the constraint that the sum of the lengths of all the edges
in the tree induced by the three leaves Si, Sj and Sk must be at least TA(i, j, k).
The objective function in the LP is to minimize the sum of the values of the
edge variables. The set of constraints for distances between pairs of leaves was

GESTALT: Genomic Steiner Alignments 111

Table 1. Heuristic vs exact Steiner sequences. Times in seconds, Pentium
133Mhz

tot tot relative time time
instance seqs triples error exact heuristic

avg min max min max min max

sank 9 84 0.003 0 0.02 15.8 41.0 0.6 1.9
mc582x6 6 20 0.004 0 0.01 52.3 75.6 0.5 3.0
mc586x6 6 20 0.007 0 0.017 17.8 42.5 0.6 2.1
mc587x6 6 20 0.01 0.003 0.019 29.2 71.9 0.8 2.7

experimented with in [10], while the strengthening to triples gives better bounds
as reported below.

For the SP objective for multiple alignment, a simple averaging argument us-
ing the usage of Steiner triples yields a simple lower bound of

∑
i,j,k SP (i, j, k)/

(n− 2) for n sequences, where SP (i, j, k) denotes the optimal sum-of-pair value
for the triple Si, Sj and Sk. This may be further extended to a LP lower bound
with one nonnegative variable for the distance between every pair of sequences
in the multiple alignment. The constraints now require that for every triple
Si, Sj, Sk of distinct sequences, the sum of the values of the three variables in-
volving the three pairs from this triple must be at least SP (i, j, k). The objective
is to minimize the sum of all the variables over all pairs of sequences.

2. Steiner Sequences. First, we determined the quality of heuristic vs exact
Steiner sequences. The results are reported in Table 1. For these tests, we used
four data sets, i.e. the sequences from Sankoff and three sets of sequences from
McClure. These sequences have between one hundred and two hundred letters
each. For each set, we have computed for each triple the exact and heuristic
Steiner sequences, and compared the relative errors. It should be noted that
on these sequences, the heuristic is roughly thirty times faster than the exact
procedure, while the average error is less than one percent. A striking result was
that in 41 out of 84 triples for the sank instance, the heuristic solution was in
fact optimal.

3. Tree Alignment. A second experiment was performed to access the
quality of the solution to the Tree Alignment problem, and the relative per-
formance with different settings of the program. We have run GESTALT on
Sankoff’s problem with all possible combinations of user choices. The results
are reported in Table 2. Again, it should be noted that using heuristic Steiner
sequences is greatly beneficial to the computing time, and, since the whole pro-
cedure is heuristic in nature, can even lead to better solutions than the exact
option. This is indeed the case here.

In order to evaluate the quality of the results, we have computed the lower
bound on the problem by using our LP module. The LP lower bound based
on all the Steiner sequences of triples for the TA objective is 266.375 improving
over the best bound of 253.5 previously known [10]. The optimal lifted alignment
finds a value of 364, as also reported in [10]. Using heuristic Steiner sequences,

112 Giuseppe Lancia and R. Ravi

Table 2. TA results on the instance sank. Times in seconds, Pentium PC

Triples Steiner Reopt Value Time

ALL HEUR EXACT 302 592
ALL HEUR HEUR 302.25 424
ALL EXACT EXACT 303.25 2802
SOME EXACT EXACT 304 493
ALL EXACT HEUR 304.25 2599
SOME EXACT HEUR 304.5 267
SOME HEUR EXACT 314 201
SOME HEUR HEUR 315.75 23
NONE - EXACT 320 152
NONE - HEUR 320.5 6
ALL HEUR NONE 322.25 298
ALL EXACT NONE 322.5 2387
SOME EXACT NONE 333.5 258
SOME HEUR NONE 333.75 15
NONE - NONE 364 1

we find a solution of value about 302 in about 7 minutes. Contrast this with
the best upper bound of 295.5 by Sankoff et al. [20]. Our improved lower bound
shows that Sankoff’s solution is within 11% of optimal.

4. Sum of Pairs. For the SP objective, we report some results for the
McClure data sets (Table 3). For each problem, we have computed the trivial
lower bound given by the sum of edit distances, and two lower bounds based on
the optimal SP alignment of triples of sequences - one uses a simple averaging
argument (LB triples) and the other the solution to an LP relaxation (LB lp).
We ran GESTALT with heuristic Steiner sequences, sampling all triples. Our
solutions are in an interval of 2 to 9 percent from the lower bound. The table
shows also the effectiveness of local reoptimization. For comparison, we also
report the SP value of the star alignment (Gusfield, [9]).

Table 3. SP lower and upper bounds for McClure data sets

Instance LB pairs LB triples LB lp Star align. GESTALT Err % GESTALT+reop Err %

mc582x6 25411 26056 26100 28444 27647 0.06 26963 0.03
mc586x6 25191 25979 26029 29307 28605 0.10 27498 0.05
mc587x6 29914 30802 30864 34085 34152 0.11 32664 0.05
mc582x10 70718 72274 72757 82011 77676 0.07 75131 0.03
mc586x10 81745 84211 84662 99140 97725 0.15 91754 0.08
mc587x10 95002 97889 98349 115918 110463 0.12 105806 0.07
mc582x12 98810 100720 101464 113328 105674 0.04 103803 0.02
mc586x12 116889 120409 121130 143792 139398 0.15 131980 0.08
mc587x12 140679 145043 145804 174270 164883 0.13 160256 0.09

GESTALT: Genomic Steiner Alignments 113

References

1. S. Altschul and D. Lipman, Trees, Stars and Multiple Sequence Alignment,
SIAM J. Appl. Math. 49 (1989) 197–209

2. S. Altschul, D. Lipman and J. D. Kececioglu, A tool for multiple sequence
alignment. Proc. Natl. Acad. Sci. USA 86 (1989) 4412–4415

3. V. Bafna, E. L. Lawler and P. Pevzner. Approximation Algorithms for Mul-
tiple Sequence Alignment. Proceedings of the 5th Combinatorial Pattern
Matching conference LNCS 807 (1994) 43–53

4. H. Carrillo and D. Lipman. The multiple sequence alignment problem in
biology. SIAM J. Appl. Math. 49:1 (1989) 197–209

5. S. C. Chan, A. K. C. Wong and D. K. Y. Chiu, “A survey of multiple sequence
comparison methods,” Bull. Math. Biol. 54 (1992) 563-598

6. D. Feng and R. Doolittle. Progressive sequence alignment as a prerequisite
to correct phylogenetic trees. J. Molec. Evol. 25 (1987) 351–360

7. O. Gotoh, Optimal alignment between groups of sequences and its application
to multiple sequence alignment, CABIOS 9:3 (1993) 361–370

8. S. K. Gupta, J. Kececioglu, and A. A. Schaffer, Making the Shortest-Paths
Approach to Sum-of-Pairs Multiple Sequence Alignment More Space Efficient
in Practice, (extended abstract) Proceedings of the 6th Combinatorial Pattern
Matching conference (1995)

9. D. Gusfield, Efficient methods for multiple sequence alignment with guaran-
teed error bounds, Bulletin of Mathematical Biology 55 (1993) 141–154

10. D. Gusfield and L. Wang, New Uses for Uniform Lifted Alignments, Submit-
ted for publication (1996)

11. D. G. Higgins, A. J. Bleasby and R. Fuchs, Clustal V: Improved software for
multiple sequence alignment, CABIOS 8 (1992) 189-191

12. D. Hirschberg, A linear space algorithm for computing maximal common
subsequences, Communications of the ACM 18 (1975) 341–343

13. T. Jiang and F. Liu, Tree Alignment And Reconstruction ap-
plication software, Version 1.0, February 1998. Available from
http://www.dcss.mcmaster.ca/∼fliu.

14. D. Lipman, S. Altschul and J. D. Kececioglu, A tool for multiple sequence
alignment. Proc. Natl. Acad. Sci. USA 86 (1989) 4412–4415

15. S. B. Needleman and C. D. Wunsch. A general method applicable to search
the similarities in the amino acid sequences of two proteins. J. Mol. Biol., 48
(1970) 444

16. M. A. McClure, T. K. Vasi and W. M. Fitch. Comparative analysis of multiple
protein–sequence alignment methods, Mol. Biol. Evol. 11 (1994) 571–592

17. R. Ravi and J. Kececioglu. Approximation algorithms for multiple sequence
alignment under a fixed evolutionary tree, Proceedings of the 6th Combina-
torial Pattern Matching conference (1995) 330–339

18. D. Sankoff, Minimal mutation trees of sequences, SIAM J. Applied Math.
28(1) (1975) 35–42

19. D. Sankoff and R. Cedergren, Simultaneous comparison of three or more se-
quences related by a tree, in D. Sankoff and J. Kruskal editors, Time warps,
string edits and macromolecules: the theory and practice of sequence compar-
ison, Addison Wesley (1983) 253–264

20. D. Sankoff, R. Cedergren and G. Laplame, Frequency of insertion-deletion,
transversion, and transition in the evolution of the 5s ribosomal rna, J. Mol.
Evol. 7 (1976) 133-149

114 Giuseppe Lancia and R. Ravi

21. D. Sankoff, Analytical approaches to genomic evolution, Biochimie 75 (1993)
409–413

22. T. F. Smith and M. S. Waterman. Comparison of Biosequences. Adv. Appl.
Math. (1981) 482–489

23. W. R. Taylor and D. T. Jones. Deriving an Amino Acid Distance Matrix, J.
Theor. Biol. 164 (1993) 65–83

24. M. Vingron and P. Argos. A fast and sensitive multiple sequence alignment
algorithm. Comput. Appl. Biosci. 5 (1989) 115–121

25. L. Wang and D. Gusfield. Improved Approximation Algorithms for Tree
Alignment, Proceedings of the 7th Combinatorial Pattern Matching confer-
ence (1996) 220–233

26. L. Wang and T. Jiang. On the complexity of multiple sequence alignment, J.
Comp. Biol. 1 (1994) 337–348

27. L. Wang, T. Jiang and E. L. Lawler. Aligning sequences via an evolutionary
tree: complexity and approximation, Algorithmica, to appear. Also presented
at the 26th ACM Symp. on Theory of Computing (1994)

Bounds on the Number of String Subsequences

Daniel S. Hirschberg

Department of Information and Computer Science
University of California at Irvine

Irvine CA 92697-3425
dan@ics.uci.edu

http://www.ics.uci.edu/∼dan/

Abstract. The problem considered is that of determining the number
of subsequences obtainable by deleting t symbols from a string of length
n over an alphabet of size s. Recurrences are proven and solved for the
maximum and average case values, and bounds on these values are ex-
hibited.

1 Problem Definition

We prove bounds on the number of subsequences of a given length that a string
on a fixed-size alphabet can have. Such bounds have been the basis for an efficient
algorithm that reconstructs a binary string from knowledge of a sufficient number
of its subsequences [6]. This research area is linked to applications of Levenshtein
distance whose usage “plays the central role” in “the study of block codes capable
of correcting substitution and synchronization errors” [2].

An L-string is a string over alphabet L, where |L| = s; Ln denotes the set
of all length n L-strings. A series is a maximal run of identical symbols and
τ(X) denotes the number of series in string X . A subsequence Y of string X is
a string obtained by deleting 0 or more symbols from X , and X is said to be
a supersequence of Y . Dt(X) denotes the set of subsequences of X that can be
obtained by deleting exactly t symbols from X .

Calabi ([1], as cited in [2]) proved that a particular string form attains the
maximum value of |Dt(X)| and found an expression for the generating function
of that maximum value. We present a direct alternative proof of the upper bound
and prove a simple underlying recurrence.

Levenshtein [3] proved that, for any binary string X ,
(
τ(X)−t+1

t

) ≤ |Dt(X)| ≤(
τ(X)+t−1

t

)
. These bounds can be generalized to L-strings [5]. However, while the

upper bound is tight, the lower bound is not. We prove a tight lower bound.
Assuming that X is equally likely any string in Ln, we derive and solve a

recurrence on the average value of |Dt(X)|.

2 Upper Bounds for |Dt(X)|
We determine an upper bound on the number of subsequences obtainable by
deleting t symbols from a string of length n over an alphabet of size s.

M. Crochemore, M. Paterson (Eds.): CPM’99, LNCS 1645, pp. 115–122, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

116 Daniel S. Hirschberg

Let L = {σ1, . . . , σs}, where the {σi} are listed in some order. Let Cn =
c1, . . . , cn be a string in Ln, where ci = σ1+(i−1 mod s). Thus, Cn has the symbols
of L in circular order, cycling as many times as needed.

Let ds(t, n) denote |Dt(Cn)|, the number of subsequences obtainable by delet-
ing t symbols from Cn, where L has cardinality s.

Calabi ([1], as cited in [2]) proved that, for all X in Ln, |Dt(X)| ≤ ds(t, n),
and that ds(t, n) is the coefficient of xn in the generating function: φ(x) =
(
∑s

j=1 xj)n−t(
∑∞

j=0 xj). Apparently, “the proof is rather involved” and was not
published. In our Theorem 1, we present a direct alternative proof of the upper
bound. In our Theorem 2, we prove a simple recurrence on ds(t, n).

We use Qa to denote the subset of strings in set Q that begin with symbol a.
For example, Db

t (X) denotes a set of subsequences of X that start with symbol
b. If Q and R are sets then we use Q + R to denote Q ∪ R with the assertion
that Q and R are disjoint and, thus, |Q + R| = |Q|+ |R|.
Lemma 1. For any L-string X, Dt(X) =

∑
a∈L Da

t (X).

Proof. The set of strings is partitioned into subsets organized by each string’s
first symbol. ut

Lemma 2. For s ≥ 1, ds(t− 1, n− 1) ≤ ds(t, n).

Proof. ds(t− 1, n− 1) counts subsequences of length n− t as does ds(t, n), but
of a smaller string. ut

If Q is a set of L-strings and σ ∈ L is a symbol then σQ denotes the set of
L-strings {σq|q ∈ Q}.
Lemma 3. For s ≥ 1, ds(t, n) =

∑s
i=1 ds(t + 1− i, n− i).

Proof. Let C
(j)
n = c1, . . . , cn be a string in Ln, where ci = σj+(i−1 mod s). Thus,

C
(j)
n has the symbols of L in circular order, beginning with σj . Using Lemma 1,

we see that Dt(Cn) =
∑s

i=1 Dσi
t (C(1)

n) =
∑s

i=1 σiDt+1−i(C
(i+1)
n−i). The statement

of the lemma follows directly. ut

Theorem 1. For s ≥ 1 and for any X ∈ Ln, |Dt(X)| ≤ ds(t, n).

Proof. By induction on n and n− t. The theorem is trivially true for n ≤ 1 and
n − t ≤ 1. Let X = x1 . . . xn. Let fi be the smallest index j such that xj = σi

(and fi is n + 1 if σi does not appear in X), where the elements of L, {σi}, are
ordered by their first appearance in X , thereby ordering fi smallest to largest.
Consequentially, fi ≥ i. We use X [i : j] to denote the substring xi . . . xj of X .

Using Lemma 1, we have

Dt(X) =
s∑

i=1

Dσi
t (X) =

s∑

i=1

σiDt+1−fi(X [fi + 1 : n]) .

Bounds on the Number of String Subsequences 117

Therefore,

|Dt(X)| =
s∑

i=1

|Dt+1−fi(X [fi + 1 : n])|

≤
s∑

i=1

|Dt+1−fi(Cn−fi)|, using the inductive hypothesis,

≤
s∑

i=1

|Dt+1−i(Cn−i)|, because fi ≥ i and by applying Lemma 2,

= ds(t, n), by applying Lemma 3.

ut

Theorem 2. For 0 ≤ t ≤ n and s ≥ 2, ds(t, n) =
∑t

i=0

(
n−t

i

)
ds−1(t− i, t).

Proof. By induction on n and n− t.
For the basis when n = 0, t must be zero and it suffices to see that ds(0, 0) =(

0
0

)
ds−1(0, 0) = 1.
For the basis when n− t = 0, since

(
0
i

)
is zero unless i = 0, it suffices to see

that ds(n, n) =
∑n

i=0

(
0
i

)
ds−1(n− i, n) = ds−1(n, n) = 1.

For the induction, using the recurrence of Lemma 3,

ds(t, n) = ds(t, n− 1) +
s∑

k=2

ds(t + 1− k, n− k) .

Let r =
∑s

k=2 ds(t + 1− k, n− k). Then

r =
s∑

k=2

t+1−k∑

i=0

(
n−t−1

i

)
ds−1(t + 1− k − i, t + 1− k), using the inductive hyp.,

=
s−1∑

j=1

t−j∑

i=0

(
n−t−1

i

)
ds−1(t− j − i, t− j), by letting j = k − 1,

=
s−1∑

j=1

t∑

i=0

(
n−t−1

i

)
ds−1(t− j − i, t− j), as ds−1(t− j − i, t− j)=0 if i>t− j,

=
t∑

i=0

(
n−t−1

i

) s−1∑

j=1

ds−1(t− i− j, t− j)

=
t∑

i=0

(
n−t−1

i

)
ds−1(t− i− 1, t), by using Lemma 3,

=
t+1∑

j=1

(
n−t−1

j−1

)
ds−1(t− j, t), by letting j = i + 1,

118 Daniel S. Hirschberg

=
t∑

j=0

(
n−t−1

j−1

)
ds−1(t− j, t), changing j’s range by noting that,

when j is 0,
(
n−t−1

j−1

)
= 0, and that, when j is t + 1, ds−1(t− j, t) = 0.

Therefore,

ds(t, n) = ds(t, n− 1) + r, using the recurrence of Lemma 3,

=
t∑

i=0

[
(

n−t−1
i

)
+

(
n−t−1

i−1

)
]ds−1(t− i, t), using the inductive hypothesis,

=
t∑

i=0

(
n−t

i

)
ds−1(t− i, t), using the binomial recurrence.

ut

Corollary 1. For 0 ≤ t ≤ n, d2(t, n) =
∑t

i=0

(
n−t

i

)
; for 0 ≤ t ≤ n, d3(t, n) =∑t

i=0

(
n−t

i

) ∑t−i
j=0

(
i
j

)
.

Proof. This follows immediately from Theorem 2 and the fact that d1(t, n) = 1
for 0 ≤ t ≤ n. ut
Observations. By evaluating ds(t, n) and expressing its difference from

(
n
t

)
as a

power series, one can see that, for t ≥ s, ds(t, n) =
(
n
t

)−nt+1−s/(t−s)!+O(nt−s).
We note that the problem of calculating the number, is(t, n), of superse-

quences obtainable by inserting t symbols in a length n string X on an alphabet
of size s is much simpler, and is invariant over X . It is known [4] that, using
a binary alphabet, i2(t, n) =

∑t
j=0

(
n+t

j

)
. This can be generalized to s ≥ 2 [5].

It is easy to see that is(t, n) = is(t, n − 1) + (s − 1)is(t − 1, n), with bound-
ary conditions is(0, n) = 1 and is(t, 0) = st. (Let X ∈ Ln−1, Y ∈ Ln+t−1, and
a, b ∈ L. Then bY is a supersequence of aX if and only if either (1) a = b and
Y is a supersequence of X , or (2) a 6= b and Y is a supersequence of aX .) This
recurrence is solved by is(t, n) =

∑t
j=0(s− 1)j

(
n+t

j

)
.

As we have just seen, the recurrence for supersequences is very simple and
intuitive. The recurrence of Theorem 2 for subsequences is simple but currently
lacks an intuitive explanation.

3 A Lower Bound for |Dt(X)|

It was stated [6,3] that, for any binary string X , |Dt(X)| ≥ (
τ(X)−t+1

t

)
. We

note that this bound is the same as
(
τ(X)−t

t

)
+

(
τ(X)−t

t−1

)
. We will improve and

generalize this bound. We first need a few lemmas.

Lemma 4. For any L-strings U, V and any σ ∈ L, |Dt(UV)| ≤ |Dt(UσV)|.

Bounds on the Number of String Subsequences 119

Proof. For all subsequences u of U and v of V , uv ∈ Dt(UV) → uσv ∈ Dt(UσV)
and uv 6= u′v′ → uσv 6= u′σv′. ut

Lemma 5. If X is an L-string such that τ(X) = n then there exists a string
Y ∈ Ln, with τ(Y) = n, such that |Dt(Y)| ≤ |Dt(X)|.
Proof. Let Y be the length n L-string consisting of one symbol from each of the
series in X . String X can be obtained from Y by a sequence of symbol insertions.
The statement of the lemma then follows from repeated applications of Lemma
4. ut

Lemma 6. If X is a string in Ln such that τ(X) = n then |Dt(X)| ≥ d2(t, n).

Proof. By induction on n and n − t. The lemma is trivially true for the base
cases, when n ≤ 2 or n − t ≤ 2. For the induction step, let X = abY , where
a 6= b because each series in X has length 1. Then,

Dt(X) = Da
t (X) + Db

t (X) +
∑

σ 6=a,b

Dσ
t (X)

⊇ Da
t (X) + Db

t (X) = aDt(bY) + bDt−1(Y) .

Using the inductive hypothesis and Lemma 3, we obtain

|Dt(X)| ≥ |Dt(bY)|+ |Dt−1(Y)|
≥ d2(t, n− 1) + d2(t− 1, n− 2) = d2(t, n) .

ut

Theorem 3. For any L-string X, |Dt(X)| ≥ ∑t
i=0

(
τ(X)−t

i

)
and this bound is

tight.

Proof. Follows directly from Corollary 1 and Lemmas 5 and 6. ut

4 The Average Number of Subsequences

Under the assumption that all length n L-strings are equiprobable, the average
number of subsequences obtainable by deleting one symbol has been shown to be
(n(s− 1) + 1) /s [2]. We develop and solve a recurrence on the average number
of subsequences obtainable by deleting t symbols.

Let Gt(n) =
∑

X∈Ln
|Dt(X)| be the sum, over all strings in Ln, of the

number of subsequences obtainable by deleting t symbols. Similarly, Ga
t (n) =∑

X∈Ln
|Da

t (X)| is the sum when the subsequences are restricted to begin with
symbol a.

We see that, for 0 < t < n,

Ga
t (n) =

∑

X∈Ln

|Da
t (X)| =

∑

b∈L

∑

X∈Lb
n

|Da
t (X)| . (1)

120 Daniel S. Hirschberg

If b = a then {X ∈ La
n} = {aY |Y ∈ Ln−1}. We note that the count of

subsequences of aY that start with a and have length n − t is the same as
the count of subsequences of Y that have length n − 1 − t because of a sim-
ple bijection between those two sets of subsequences. As a result, we see that∑

X∈La
n
|Da

t (X)| = ∑
Y ∈Ln−1

|Da
t (aY)| = ∑

Y ∈Ln−1
|Dt(Y)|.

If b 6= a then {X ∈ Lb
n} = {bY |Y ∈ Ln−1}. We note that the count of

subsequences of bY that start with a and have length n − t is the same as the
count of subsequences of Y that start with a and have length n− t because the
leading b of bY can just be discarded. As a result, we see that

∑
X∈Lb

n
|Da

t (X)| =∑
Y ∈Ln−1

|Da
t (bY)| = ∑

Y ∈Ln−1
|Dt−1(Y)|.

Therefore,

Ga
t (n) =

∑

X∈Ln−1

|Dt(X)|+ (s− 1)
∑

X∈Ln−1

|Da
t−1(X)| . (2)

We then see that

Ga
t (n) = Gt(n− 1) + (s− 1)Ga

t−1(n− 1) (3)

follows immediately from (1), (2) and the definitions.
From the fact that Gt(n) =

∑
a∈L Ga

t (n), using (3) s times, once for each
symbol in L, we obtain

Gt(n) = sGt(n− 1) + (s− 1)Gt−1(n− 1) . (4)

Boundary conditions, G0(n) = Gn(n) = sn, hold because there is only one
string obtainable by deleting none or all of the symbols in each of the sn strings
in Ln.

Let Et(n) be the average (or expected) value of |Dt(X)|, where X can equally
likely be any string in Ln, and let λ = 1− 1/s.

Theorem 4. For 0 < t < n, Et(n) = Et(n − 1) + λEt−1(n − 1), and E0(n) =
Et(t) = 1.

Proof. This follows from the recurrence (4) and boundary conditions on G and
the fact that Et(n) = Gt(n)/sn. ut

Theorem 5. Et(n) =
∑t

i=0

(
n−1−t+i

i

)
λi.

Proof. We use a generating function (see, for example, Liu [7]).
Let Fn(x) =

∑∞
t=0 Et(n)xt. We note that Et(n) = 0 if t > n, and that

Et(n) = 1 if t = n or t = 0. Then,

Fn(x) − 1− xn =
n−1∑

t=1

Et(n)xt

=
n−1∑

t=1

Et(n− 1)xt + λ

n−1∑

t=1

Et−1(n− 1)xt

Bounds on the Number of String Subsequences 121

=
n−1∑

t=1

Et(n− 1)xt + λx

n−2∑

t=0

Et(n− 1)xt

= [Fn−1(x) − E0(n− 1)] + λ[xFn−1(x)− xnEn−1(n− 1)] .

Therefore,
Fn(x) = (1 + λx)Fn−1(x) + xn(1− λ) . (5)

By iterated expansion of (5), we obtain

Fn(x) = (1 + λx)n +
n−1∑

i=0

(1 + λx)i(1− λ)xn−i

=
n∑

i=0

(
n
i

)
λixi +

n−1∑

i=0

i∑

j=0

(
i
j

)
λj(1 − λ)xn+j−i . (6)

In the expression (6) of Fn(x), the coefficient of xt is Et(n) =
(
n
t

)
λt +∑n−1

i=0

(
i
j

)
λj(1 − λ), where j = i − (n − t) ≥ 0. Therefore we can restrict the

summation to i ≥ n− t and, letting k = n− i, we get

Et(n) =
(
n
t

)
λt +

t∑

k=1

(
n−k
t−k

)
λt−k(1− λ) .

Noting that
(
n−k
t−k

)− (
n−k−1
t−k−1

)
=

(
n−k−1

t−k

)
, we finally obtain

Et(n) =
(
n
t

)
λt +

t−1∑

k=1

(
n−k−1

t−k

)
λt−k − (

n−1
t−1

)
λt +

(
n−t
0

)

=
(
n−1

t

)
λt +

t−1∑

i=1

(
n−1−t+i

i

)
λi + 1 .

ut
Observation. For t < nλ/2, Et(n) ≥ ∑3

j=0

(
n−1−j

t−j

)
λt−j ≥ .93Et(n).

References

1. L. Calabi, “On the computation of Levenshtein’s distances,” TM-9-0030, Parke
Math. Labs., Inc., Carlisle, Mass., 1967.

2. L. Calabi and W.E. Hartnett, “Some general results of coding theory with applica-
tions to the study of codes for the correction of synchronization errors,” Information
and Control 15,3 (Sept 1969) 235-249. Reprinted in: W. E. Hartnett (ed), Founda-
tions of Coding Theory (1974) Chapter 7, pp.107-121.

3. V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions and
reversals,” Soviet Phys. Dokl. 10 (1966) 707-710.

4. V. I. Levenshtein, “Elements of the coding theory,” in: Discrete Math. and Math.
Probl. of Cybern., Nauka, Moscow (1974) 207-235 (in Russian).

122 Daniel S. Hirschberg

5. V. I. Levenshtein, “On perfect codes in deletion and insertion metric,” Discrete
Math. Appl. 2,3 (1992) 241-258. Originally published in Diskretnaya Matematika
3,1 (1991) 3-20 (in Russian).

6. V. I. Levenshtein, “Reconstructing binary sequences by the minimum number of
their subsequences or supersequences of a given length,” Proc. 5th Int. Wkshp on
Alg. & Comb. Coding Theory, Sozopol, Bulgaria (1996) 176-183.

7. C. L. Liu, Introduction to Combinatorial Mathematics, McGraw-Hill, 1986, pp. 80-
86.

Approximate Periods of Strings

Jeong Seop Sim1 ?, Costas S. Iliopoulos2,4 ??, Kunsoo Park1 ?, and
William F. Smyth3,4 ? ? ?

1 Department of Computer Engineering, Seoul National University
{jssim, kpark}@theory.snu.ac.kr

2 Department of Computer Science, King’s College London
csi@dcs.kcl.ac.uk

3 Department of Computing & Software, McMaster University
smyth@mcmaster.ca

4 School of Computing, Curtin University

Abstract. The study of approximately periodic strings is relevant to
diverse applications such as molecular biology, data compression, and
computer-assisted music analysis. Here we study different forms of ap-
proximate periodicity under a variety of distance rules. We consider three
related problems, for two of which we derive polynomial-time algorithms;
we then show that the third problem is NP-complete.

1 Introduction

Repetitive or periodic strings have been studied in such diverse fields as molecu-
lar biology, data compression, and computer-assisted music analysis. In response
to requirements arising out of a variety of applications, interest has arisen in algo-
rithms for finding regularities in strings; that is, periodicities of an approximate
nature. Some important regularities that have been studied in the literature are
the following:

– Periods: A string p is called a period of a string x if x can be written as
x = pkp′ where k ≥ 1 and p′ is a prefix of p. The shortest period of x is
called the period of x. For example, if x = abcabcab, then abc, abcabc, and x
are periods of x, while abc is the period of x. If x has a period p such that
|p| ≤ |x|/2, then x is said to be periodic. Further, if setting x = pk implies
k = 1, x is said to be primitive; if k ≥ 2, pk is called a repetition.

– Covers: A string w is called a cover of x if x can be constructed by concate-
nations and superpositions of w. For example, if x = ababaaba, then aba and
x are the covers of x. If x has a cover w 6= x, x is said to be quasiperiodic;
otherwise, x is superprimitive.

– Seeds: A substring w of x is called a seed of x if it is a cover of any superstring
of x. For example, aba and ababa are some seeds of x = ababaab.

? Supported by KOSEF Grant 981-0925-128-2.
?? Supported in part by the CCSLAAR Royal Society Researh Grant.

? ? ? Supported by NSERC Grant No. A8180.

M. Crochemore, M. Paterson (Eds.): CPM’99, LNCS 1645, pp. 123–133, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

124 Jeong Seop Sim et al.

– Repetitions: A substring w of x that is a repetition is called a repetition
or tandem repeat in x. For example, if x = aababab, then aa and ababab are
repetitions in x; in particular, a2 = aa is called a square and (ab)3 = ababab
is called a cube.

The notions cover and seed are generalizations of periods in the sense that
superpositions as well as concatenations are used to define them. A significant
amount of research has been done on each of these four notions:

– Periods: The preprocessing of the Knuth-Morris-Pratt algorithm [19] finds
all periods of x in linear time — in fact, all periods of every prefix of x. In
parallel computation, Apostolico, Breslauer and Galil [2] gave an optimal
O(log log n) time algorithm for finding all periods, where n is the length of
x.

– Covers: Apostolico, Farach and Iliopoulos [4] introduced the notion of cov-
ers and described a linear-time algorithm to test whether x is superprim-
itive or not (see also [7,8,17]). Moore and Smyth [26] and recently Li and
Smyth [22] gave linear-time algorithms for finding all covers of x. In paral-
lel computation, Iliopoulos and Park [16] obtained an optimal O(log log n)
time algorithm for finding all covers of x. Apostolico and Ehrenfeucht [3]
and Iliopoulos and Mouchard [15] considered the problem of finding maxi-
mal quasiperiodic substrings of x. A two-dimensional variant of the covering
problem was studied in [11,13], and minimum covering by substrings of given
length in [18].

– Seeds: Iliopoulos, Moore and Park [14] introduced the notion of seeds and
gave an O(n log n) time algorithm for computing all seeds of x. For the same
problem Berkman, Iliopoulos and Park [6] presented a parallel algorithm
that requires O(log n) time and O(n log n) work.

– Repetitions: There are several O(n log n) time algorithms for finding all
the repetitions in a string [10,5,24]. In parallel computation, Apostolico and
Breslauer [1] gave an optimal O(log log n) time algorithm (i.e., total work is
O(n log n)) for finding all the repetitions.

A natural extension of the repetition problems is to allow errors. Approx-
imate repetitions are common in applications such as molecular biology and
computer-assisted music analysis [9,12]. Among the four notions above, only ap-
proximate repetitions have been studied. If x = uww′v where w and w′ are
similar, ww′ is called an approximate square or approximate tandem repeat.
When there is a nonempty string y between w and w′, we say that w and
w′ are an approximate nontandem repeat. In [21], Landau and Schmidt gave an
O(kn log k log n) time algorithm for finding repeated patterns whose edit distance
is at most k in a text of length n. Schmidt also gave an O(n2 log n) algorithm
for finding approximate tandem or nontandem repeats in [28] which uses an
arbitrary score for similarity of repeated strings.

In this paper, we introduce the notion of approximate periods which can
be considered as an approximate version of three notions periods, covers, and

Approximate Periods of Strings 125

seeds. Here we study different forms of approximate periodicity under a vari-
ety of distance rules. We consider three related problems, for two of which we
derive polynomial-time algorithms; we then show that the third problem is NP-
complete.

2 Preliminaries

A string is a sequence of zero or more characters from an alphabet Σ. The set
of all strings over the alphabet Σ is denoted by Σ∗. The empty string is denoted
by ε. The ith character of a string x is denoted by x[i]. A substring of x that
starts at position i and ends at position j is denoted by x[i..j].

A string w is a prefix of x if x = wu for u ∈ Σ∗. Similarly, w is a suffix of x
if x = uw for u ∈ Σ∗. A string w is a subsequence of x (or x is a supersequence of
w) if w is obtained by deleting zero or more characters (at any positions) from
x. For example, ace is a subsequence of aabcdef .

2.1 Measures

Absolute measures. To measure the similarity (or distance) between two
strings, the Hamming distance and the edit distance are widely used. The
Hamming distance between two strings x and y is defined to be the smallest
number of change operations to convert x to y. The edit distance is defined to
be the smallest number of change, insert, and delete operations to convert x
to y. In more general cases, especially in molecular biology, a penalty matrix
is used. A penalty matrix specifies the substitution cost for each pair of
characters and the insertion/deletion cost for each character. An arbitrary
penalty matrix can also be used as a relative measure because it can contain
both positive and negative costs [28]. It is common to assume that a penalty
matrix satisfies the triangle inequality [30].

Relative measures. When we want to compare the similarity between x and
y and the similarity between x′ and y′, we need relative measures (rather
than absolute measures) because the lengths of the strings x, y, x′, y′ may be
different. There are two ways to define relative measures between x and y:
– First, we can fix one of the two strings and define a relative measure with

respect to the fixed string. The error ratio with respect to x is defined to
be t/|x|, where t is an absolute measure between x and y.

– Second, we can define a relative measure symmetrically. The symmetric
error ratio is defined to be t/l, where t is an absolute measure between
x and y, and l = (|x| + |y|)/2 [29]. Note that we may take l = |x| + |y|
(then everything is the same except that the ratio is multiplied by 2).

3 Problem Definitions

Given two strings x and p, we define approximate periods as follows. If there
exists a partition of x into disjoint blocks of substrings, i.e., x = p1p2 · · · pr

126 Jeong Seop Sim et al.

(pi 6= ε) such that the distance between p and pi for every 1 ≤ i ≤ r is less
than or equal to t, we say that p is a t-approximate period of x (or p is an
approximate period of x with distance t). Each pi, 1 ≤ i ≤ r, will be called
a partition block of x. Note that there can be several versions of approximate
periods according to the definition of distance. This definition of approximate
periods can be considered as an approximate version of the three notions periods,
covers, and seeds discussed above, because

(i) superpositions in defining covers and seeds and
(ii) extra characters at the ends of a given string in defining periods and seeds

can be accounted for in some degree when we use edit distances for the measure.
Of course, if we allow overlaps between pi’s, then we could extend the definition of
an approximate period. But this will merely increase the complexity of problems
of finding approximate periods.

We consider the following problems related to approximate periods.

Problem 1. Given x and p, find the minimum t such that p is a t-approximate
period of x.

Since p is fixed in this case, it makes no difference whether we use the
absolute Hamming (or edit) distance or the error ratio with respect to p. We can
also use a penalty matrix for the measure. If a threshold k on the edit distance
is given as input in Problem 1, the problem asks whether p is a k-approximate
period of x or not.

Problem 2. Given a string x, find a substring p of x that is an approximate
period of x with the minimum distance.

Since the length of p is not (a priori) fixed in this problem, we need to use
relative measures (i.e., error ratios or penalty matrices) rather than absolute
measures.

Problem 3. Given a string x, find a string p that is an approximate period of x
with the minimum distance.

This problem is harder than Problem 2 because p can be any string, not
necessarily a substring of x.

4 Algorithms and NP-Completeness

Basically we will use arbitrary penalty matrices for the measure of similarity in
each problem. Recall that a penalty matrix defines the substitution cost for each
pair of characters and the insertion or deletion cost for each character.

Approximate Periods of Strings 127

4.1 Problem 1

Our algorithm for Problem 1 consists of two steps. Let n = |x| and m = |p|.

1. Compute the distance between p and every substring of x.
2. Compute the minimum t such that p is a t-approximate period of x. We use

dynamic programming to compute t. Let wij be the distance between p and
x[i..j]. These values of wij are obtained from the first step. Let ti be the
minimum value such that p is a ti-approximate period of x[1..i]. Let t0 = 0.
For i = 1 to n, we compute ti by the following formula:

ti = min
0≤h<i

(max(th, wh+1,i)).

The value tn is the minimum t such that p is a t-approximate period of x.

To compute the distances in step 1, we use the dynamic programming table
called the D table. To compute the distance between two strings x and y, a D
table of size (|x|+1)×(|y|+1) is used. Each entry D[i, j] (0 ≤ i ≤ |x|, 0 ≤ j ≤ |y|)
stores the minimum cost of transforming x[1..i] to y[1..j]. Initially, D[0, 0] = 0,
D[i, 0] = D[i− 1, 0] + δ(x[i], ∆), and D[0, j] = D[0, j − 1] + δ(∆, y[j]). Then we
can compute all the entries of the D table in O(|x||y|) time by the following
recurrence:

D[i, j] = min

D[i− 1, j] + δ(x[i], ∆)
D[i, j − 1] + δ(∆, y[j])
D[i− 1, j − 1] + δ(x[i], y[j])

where δ(a, b) is the cost of transforming the character a to b. (∆ is a space, so
δ(a, ∆) means the deletion cost of a and δ(∆, a) means the insertion cost of a.)

Theorem 1. Problem 1 can be solved in O(mn2) time when an arbitrary penalty
matrix is used for the measure of similarity. If the edit distance (resp. the Ham-
ming distance) is used for the measure, it can be solved in O(mn) time (resp. in
O(n) time).

Proof. For an arbitrary penalty matrix, step 1 takes O(mn2) time since we make
a D table of size m×(n−i+1) for each position i of x. In step 2, we can compute
the minimum t in O(n2) time since we compare O(n) values at each position of
x. Thus, the total time complexity is O(mn2).

When the edit distance is used for the measure of similarity, this algorithm
for Problem 1 can be improved. In this case, δ(a, b) is always 1 if a 6= b; δ(a, b) =
0, otherwise. Now it is not necessary to compute the edit distances between p
and the substrings of x whose lengths are larger than 2m because their edit
distances with p will exceed m. (It is trivially true that p is an m-approximate
period of x.) Step 1 now takes O(m2n) time since we make a D table of size
m× 2m for each position of x. Also, step 2 can be done in O(mn) time since we
compare O(m) values at each position of x. Thus the time complexity is reduced
to O(m2n).

128 Jeong Seop Sim et al.

However, we can do better. Step 1 can be solved in O(mn) time by the
algorithm due to Landau, Myers, and Schmidt [20]. Given two strings x and y
and a forward (resp. backward) solution for the comparison between x and y,
the algorithm in [20] incrementally computes a solution for x and by (resp. yb)
in O(k) time, where b is an additional character and k is a threshold on the edit
distance. This can be done due to the relationship between the solution for x
and y and the solution for x and by. When k = m (i.e., the threshold is not
given), we can compute all the edit distances between p and every substring of x
whose length is at most 2m in O(mn) time using this algorithm. Therefore, we
can solve Problem 1 in O(mn) time if the edit distance is used for the measure
of similarity.

If we use the Hamming distance for the measure, it takes trivially O(n) time
since x must be partitioned into blocks of size m. 2

When the threshold k on the edit distance is given as input for Problem 1,
it can be solved in O(kn) time because each step of the above algorithm takes
O(kn) time.

4.2 Problem 2

Let p be a candidate string for the approximate period of x. If the Hamming (or
edit) distance is used for Problem 2, we need to use relative measures because
the length of p varies. (If the absolute Hamming or edit distance is used, every
substring of x of length 1 is a 1-approximate period of x.) We can use the error
ratio t/l for the measure of similarity, where t is the Hamming (or edit) distance
between the two strings and l is either the average length of the two strings
(symmetric error ratio) or the length of p (error ratio with respect to p).

When the relative edit distance is used for the measure of similarity, Problem
2 can be solved in O(n4) time by our algorithm for Problem 1. If we take each
substring of x as p and apply the O(mn) algorithm for Problem 1 (that uses
the algorithm in [20]), it takes O(|p|n) time for each p. Since there are O(n2)
substrings of x, the overall time is O(n4).

Without using the somewhat complicated algorithm in [20], however, we can
solve Problem 2 in O(n4) time by the following simple algorithm for arbitrary
penalty matrices.

Let R be the minimum distance so far. Initially, R = ∞. For i = 1 to n,
we do the following. For each i, we process the n− i + 1 substrings that start at
position i. Let m be the length of a chosen substring of x as p. Let m = 1.

1. Take x[i..i + m − 1] as p and compute the distance between p and every
substring of x. This can be done by making n D tables with p and each of
n suffixes of x. By adding just one row to each of previous D tables (i.e., n
D tables when p = x[i..i + m − 2]), we can compute these new D tables in
O(n2) time. (Note that when m = 1, we create new D tables.)

2. Compute the minimum distance t such that p is a t-approximate period of
x. This step is similar to the second step of the algorithm for Problem 1. Let

Approximate Periods of Strings 129

whj be the distance between p and x[h..j] which is obtained from step 1. Let
tj be the minimum value such that p is a tj-approximate period of x[1..j]
and let t0 = 0. For j = 1 to n, we compute tj by the following formula:

tj = min
0≤h<j

(max(th, wh+1,j)).

The value tn is the minimum t such that p is a t-approximate period of x. If
t is smaller than R, we update R with t. If m < n− i + 1, increase m by 1
and go to step 1.

When all the steps are completed, the final value of R is the minimum distance
and a substring that is an R-approximate period of x is an answer to Problem
2.

Theorem 2. Problem 2 can be solved in O(n4) time when an arbitrary penalty
matrix is used for the measure of similarity. If the Hamming distance is used for
the measure, it can be solved in O(n3) time.

Proof. For an arbitrary penalty matrix, we make n D tables in O(n2) time in
step 1 and compute the minimum distance in O(n2) time in step 2. For m = 1
to n − i + 1, we repeat the two steps. Therefore, it takes O(n3) time for each
i and the total time complexity of this algorithm is O(n4). If the relative edit
distance is used, this algorithm can be slightly simplified as in Problem 1, but
it still takes time O(n4).

If the relative Hamming distance is used for the measure, Problem 2 can be
solved in O(n3) time because there are O(n2) candidates for p and O(n) time is
required for each candidate. 2

4.3 Problem 3

Given a set of strings, the shortest common supersequence (SCS) problem is
to find a shortest common supersequence of all strings in the set. The SCS
problem is NP-complete [23,27]. We will show that Problem 3 is NP-complete
by a reduction from the SCS problem. In this section we will call Problem 3 the
AP problem (abbreviation of the approximate period problem).

The decision versions of the SCS and AP problems are as follows:

Definition 1. Given a positive integer m and a finite set S of strings from Σ∗

where Σ is a finite alphabet, the SCS problem is to decide if there exists a string
w with |w| ≤ m such that w is a supersequence of each string in S.

Definition 2. Given a number t, a string x from (Σ′)∗ where Σ′ is a finite
alphabet, and a penalty matrix, the AP problem is to decide if there exists a
string u such that u is a t-approximate period of x.

Now we transform an instance of the SCS problem to an instance of the AP prob-
lem. We can assume that Σ = {0, 1} since the SCS problem is NP-complete even

130 Jeong Seop Sim et al.

*

2

* 2

*

2

*

2

1

2

21122

0

0

0

0

0

0

0

0

0

$

2

1

1

1

1

∆

#

$

21111∆

2

1

1

1

1

1

1

112

22

2 2

2 2

22

2

2

1

b

a b

1a

0

0 1

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

2
����
����
����
����
����

����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

1

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����
����

����
����
����
����
����
�������

���
���
���
���

���
���
���
���
���

1

���
���
���
���
���

���
���
���
���
���

2

Fig. 1. The penalty matrix M

if Σ = {0, 1} [25,27]. First, we set Σ′ = Σ ∪ {a, b, #, $, ∗1, ∗2, ∆}. Assume that
there are n strings s1, . . . , sn in S. Let x = #s1$#s2$ · · ·#sn$#∗1

m$#∗2
m$.

Then, set t = m and define the penalty matrix as in Figure 1, where a shaded
entry can be any value greater than m. It is easy to see that this transformation
can be done in polynomial time. Note that the penalty matrix M is a metric.

Lemma 1. Assume that x is constructed as above. If u is an m-approximate
period of x, then u is of the form #α$ where α ∈ {a, b}m.

Proof. We first show that u must have one # and one $.

1. Suppose that u has no # (resp. $). Clearly, there exists a partition block of
x which has at least one # (resp. $), and the distance between u and the
block is greater than m. Therefore, u must have at least one # and at least
one $.

2. Suppose that u has more than one # (or $). Assume that u has two #’s.
(The other cases are similar.) Then u must also have two $’s because unless
the number of #’s equals that of $’s in u, at least one partition block of x
cannot have the same numbers of #’s and $’s to those of u. Consider the last
partition block of x. Since the last block must have two #’s and two $’s as
u, it contains #∗1

m$#∗2
m$. For the distance between u and the last block

of x to be at most m, u must have at least m characters from {∗1, ∗2}. In
such cases, however, the distance between u and any other partition block
of x will exceed m.

It remains to show that u = #α$ where α ∈ {a, b}m. Since u has one # and
one $, x must be partitioned just after every occurrence of $. Let u be of the
form β#α$γ, where β, α, γ ∈ {0, 1, a, b, ∗1, ∗2, ∆}∗. Consider the last two blocks

Approximate Periods of Strings 131

#∗1
m$ and #∗2

m$ of x. If α contains i ∗1’s for i ≥ 1, α must also have i ∗2’s and
the remaining m− 2i characters in α must be from {a, b} so that the distances
between u and the last two blocks of x do not exceed m. However, this makes
the distance between u and any other partition block of x exceed m due to ∗1’s
and ∗2’s in α. Hence α cannot have ∗1 or ∗2. Also, α cannot have any character
from {0, 1, ∆} since 0, 1 and ∆ have cost 2 with ∗1 and ∗2 in the last two blocks
of x. For the distances between u and the last two blocks of x to be at most m,
β and γ must be empty and α must be of the form {a, b}m. 2

Theorem 3. The AP problem is NP-complete.

Proof. It is easy to see that the AP problem is in NP. To show that the AP
problem is NP-complete, we need to show that S has a common supersequence
w such that |w| ≤ m if and only if there exists a string u such that u is an
m-approximate period of x.

(if) By Lemma 1, u = #α$ where α ∈ {a, b}m. Since u is an m-approximate
period of x, the distance between u and each partition block #si$ is at most m.
(The distances between u and the last two blocks #∗1

m$ and #∗2
m$ are always

m.) Since |α| = m and the distance between α and si is at most m, each 0 (resp.
1) in si must be aligned with a (resp. b) in α. That is, each a (resp. b) in α must
be aligned with 0 (resp. 1) or ∆ in si. If we substitute 0 for a and 1 for b in α,
we obtain a common supersequence w of s1, . . . , sn such that |w| = m. (Note
that if a or b in α is aligned with ∆ for all si, we can delete the character in α
and we can obtain a common supersequence which is shorter than m.) A similar
alignment was used by Wang and Jiang [30].

(only if) Let s be a common supersequence of S such that |s| ≤ m. Let α be
the string constructed by substituting a for 0 and b for 1 in s. Partition x just
after every occurrence of $. The distance between each partition block of x and
#α$ is at most m since each a (resp. b) in α can be aligned with 0 (resp. 1), ∆,
∗1, or ∗2 in each partition block. Therefore, #α$ is an m-approximate period of
x. 2

References

1. A. Apostolico and D. Breslauer, An optimal O(log log N)-time parallel algorithm
for detecting all squares in a string, SIAM Journal on Computing 25, 6 (1996),
1318-1331.

2. A. Apostolico, D. Breslauer and Z. Galil, Optimal parallel algorithms for peri-
ods, palindromes and squares, Proc. 19th Int. Colloq. Automata Languages and
Programming, Lecture Notes in Computer Science 623 (1992), 296-307.

3. A. Apostolico and A. Ehrenfeucht, Efficient detection of quasiperiodicities in
strings, Theoretical Computer Science 119, 2(1993), 247-265.

4. A. Apostolico, M. Farach and C.S. Iliopoulos, Optimal superprimitivity testing for
strings, Information Processing Letters 39, 1 (1991), 17-20.

5. A. Apostolico, F.P. Preparata, Optimal off-line detection of repetitions in a string,
Theoretical Computer Science 22, (1983), 297-315.

132 Jeong Seop Sim et al.

6. O. Berkman, C.S. Iliopoulos and K. Park, The subtree max gap problem with
application to parallel string covering, Information and Computation 123, 1 (1995),
127-137.

7. D. Breslauer, An on-line string superprimitivity test, Information Processing Let-
ters 44 (1992), 345-347.

8. D. Breslauer, Testing string superprimitivity in parallel, Information Processing
Letters 49, 5 (1994), 235-241.

9. T. Crawford, C.S. Iliopoulos and R. Raman, String Matching Techniques for Mu-
sical Similarity and Melodic Recognition, Computing in Musicology, 11 (1998),
73-100.

10. M. Crochemore, An optimal algorithm for computing the repetitions in a word,
Information Processing Letters 12, 5 (1981), 244-250.

11. M. Crochemore, C.S. Iliopoulos and M. Korda, Two-dimensional Prefix String
Matching and Covering on Square Matrices, Algorithmica 20 (1998), 353-373.

12. M. Crochemore, C.S. Iliopoulos and H. Yu, Algorithms for computing evolutionary
chains in molecular and musical sequences, Proc. 9th Australasian Workshop on
Combinatorial Algorithms (1998), 172-185.

13. C.S. Iliopoulos and M. Korda, Optimal parallel superprimitivity testing on square
arrays, Parallel Processing Letters 6, 3 (1996), 299-308.

14. C.S. Iliopoulos, D.W.G. Moore and K. Park, Covering a string, Algorithmica 16
(1996), 288-297.

15. C.S. Iliopoulos and L. Mouchard, An O(n log n) algorithm for computing all maxi-
mal quasiperiodicities in strings, to appear in the Proceedings of CATS’99: “Com-
puting: Australasian Theory Symposium”, Auckland, New Zealand, Lecture Notes
in Computer Science (1999), 262–272.

16. C.S. Iliopoulos and K. Park, A work-time optimal algorithm for computing all
string covers, Theoretical Computer Science 164 (1996), 299-310.

17. C.S. Iliopoulos and K. Park, An optimal O(log log n)-time algorithm for parallel
superprimitivity testing, J. Korea Inform. Sci. Soc. 21 (1994), 1400-1404.

18. C.S. Iliopoulos and W.F. Smyth, On-line algorithms for k-covering, Proc. 9th Aus-
tralasian Workshop on Combinatorial Algorithms (1998), 97-106.

19. D.E. Knuth, J.H. Morris and V.R. Pratt, Fast pattern matching in strings, SIAM
Journal on Computing 6, 1 (1977), 323-350.

20. G.M. Landau, E.W. Myers and J.P. Schmidt, Incremental string comparison, SIAM
Journal on Computing 27, 2 (1998), 557-582.

21. G.M. Landau and J.P. Schmidt, An algorithm for approximate tandem repeats,
Proc. 4th Symp. Combinatorial Pattern Matching, Lecture Notes in Computer
Science 648 (1993), 120-133.

22. Y. Li and W.F. Smyth, An optimal on-line algorithm to compute all the covers of
a string, preprint.

23. D. Maier, The complexity of some problems on subsequences and supersequences,
J. Assoc. Comput. Mach. 25 (1978), 322-336.

24. M.G. Main and R.J. Lorentz, An algorithm for finding all repetitions in a string,
Journal of Algorithms 5 (1984), 422-432.

25. M. Middendorf, More on the complexity of common superstring and supersequence
problems, Theoretical Computer Science 125, 2 (1994), 205-228.

26. D. Moore and W.F. Smyth, A correction to “An optimal algorithm to compute all
the covers of a string.”, Information Processing Letters 54, 2 (1995), 101-103.

27. K.J. Räihä and E. Ukkonen, The shortest common supersequence problem over
binary alphabet is NP-complete. Theoretical Computer Science 16 (1981), 187-
198.

Approximate Periods of Strings 133

28. J.P. Schmidt, All highest scoring paths in weighted grid graphs and its application
to finding all approximate repeats in strings, SIAM Journal on Computing 27, 4
(1998), 972-992.

29. P.H. Sellers, Pattern recognition genetic sequences by mismatch density, Bulletin
of Mathematical Biology 46, 4 (1984), 501-514.

30. L. Wang and T. Jiang, On the complexity of multiple sequence alignment, J. Comp.
Biol. 1 (1994), 337-348.

Finding Maximal Pairs with Bounded Gap

Gerth Stølting Brodal1?, Rune B. Lyngsø1 ?, Christian N.S. Pedersen1 ?, and
Jens Stoye2

1 Basic Research in Computer Science (BRICS), Centre of the Danish National
Research Foundation, Department of Computer Science,

University of Aarhus, Ny Munkegade, 8000 Århus C, Denmark.
{gerth,rlyngsoe,cstorm}@brics.dk

2 Deutsches Krebsforschungszentrum (DKFZ), Theoretische Bioinformatik,
Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.

j.stoye@dkfz-heidelberg.de

Abstract. A pair in a string is the occurrence of the same substring
twice. A pair is maximal if the two occurrences of the substring cannot
be extended to the left and right without making them different. The gap
of a pair is the number of characters between the two occurrences of the
substring. In this paper we present methods for finding all maximal pairs
under various constraints on the gap. In a string of length n we can find
all maximal pairs with gap in an upper and lower bounded interval in
time O(n log n+ z) where z is the number of reported pairs. If the upper
bound is removed the time reduces to O(n+z). Since a tandem repeat is
a pair where the gap is zero, our methods can be seen as a generalization
of finding tandem repeats. The running time of our methods equals the
running time of well known methods for finding tandem repeats.

1 Introduction

A pair in a string is the occurrence of the same substring twice. A pair is left-
maximal (right-maximal) if the characters to the immediate left (right) of the
two occurrences of the substring are different. A pair is maximal if it is both
left- and right-maximal. The gap of a pair is the number of characters between
the two occurrences of the substring. For example, the two occurrences of the
substring ma in the string maximal form a maximal pair of ma with gap two.

Gusfield [9, Sect. 7.12.3] describes how to report all maximal pairs in a string
using the suffix tree of the string in time O(n + z) and space O(n), where n
is the length of the string and z is the number of reported pairs. Since there
is no restriction on the gap of the maximal pairs reported by this algorithm,
many of them probably describe occurrences of substrings that are overlapping
or far apart in the string. In many applications in computational biology this
is unfortunate, so several papers address the problem of finding occurrences of
similar substrings not too far apart [13,17,23].

? Supported by the ESPRIT Long Term Research Programme of the EU under project
number 20244 (ALCOM-IT).

M. Crochemore, M. Paterson (Eds.): CPM’99, LNCS 1645, pp. 134–149, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Finding Maximal Pairs with Bounded Gap 135

In this paper we will describe how to find all maximal pairs in a string with
gap in an upper and lower bounded interval in time O(n log n+z) and space O(n).
The interval of allowed gaps can be chosen such that we report a maximal pair
only if the gap is between constants c1 and c2, but more generally, it can be
chosen such that we report a maximal pair of α only if the gap is between g1(|α|)
and g2(|α|), where g1 and g2 are functions that can be computed in constant time.
This, for example, makes it possible to find all maximal pairs with gap between
zero and some fraction of the length of the repeated substring. If we remove the
upper bound on allowed gaps, and only require the gap of a reported pair of α
to be at least g1(|α|), then the running time reduces to O(n + z). The methods
we present all use the suffix tree as the fundamental data structure combined
with efficient methods for merging search trees and heap-ordered trees.

The problem of finding occurrences of repeated substrings in a string is well
studied. Most of the work has been concerned with efficient methods for finding
occurrences of contiguously repeated substrings. An occurrence of a substring
of the form αα is called an occurrence of a square or a tandem repeat. Most
well-known methods for finding the occurrences of all tandem repeats in a string
require time O(n log n+ z), where n is the length of the string and z is the num-
ber of reported occurrences of tandem repeats [5,2,18,15,24]. Work has also been
done on just detecting whether or not a string contains a tandem repeat [19,6].
Recently, extending on the idea presented in [6], two methods have been pre-
sented that find a compact representation of all tandem repeats in a string in
time O(n) [14,10]. Other papers consider the problem of finding occurrences of
contiguous repeats of substrings that are within some Hamming- or edit-distance
of each other [16].

In biological sequence analysis searching for tandem repeats is used to re-
veal structural and functional information [9, pp. 139–142], but searching for
exact tandem repeats can be too restrictive because of sequencing and other
experimental errors. By searching for maximal pairs with small gaps (maybe
depending on the length of the substring) it could be possible to compensate
for these errors. On the other hand, finding maximal pairs with a gap within
an interval can be seen as a generalization of finding occurrences of tandem re-
peats. Stoye and Gusfield [24] say that an occurrence of the tandem repeat αα
is a branching occurrence of the tandem repeat αα if and only if the characters
to the immediate right of the two occurrences of α are different, and they ex-
plain how to deduce the occurrence of all tandem repeats in a string from the
occurrences of branching tandem repeats in time proportional to the number
of tandem repeats. Since a branching occurrence of a tandem repeat is just a
right-maximal pair with gap zero, the methods presented in this paper can be
used to find all tandem repeats in time O(n log n + z). This matches the time
bounds of previous published methods for this problem [5,2,18,15,24].

The rest of this paper is organized as follows. In Sect. 2 we define pairs and
suffix trees and describe how in general to find pairs using the suffix tree. In
Sect. 3 we present facts about efficient merging of search trees, and use them to
formulate methods for finding all maximal pairs in a string with gap in an upper

136 Gerth Stølting Brodal et al.

and lower bounded interval. In Sect. 4 we briefly discuss how to find all maximal
pairs in a string with gap in a lower bounded interval. Finally, in Sect. 5 we
summarize our work and discuss open problems.

2 Preliminaries

Throughout this paper S will denote a string of length n over a finite alphabet Σ.
We will use S[i], for i = 1, 2, . . . , n, to denote the ith character of S, and use
S[i .. j] as notation for the substring S[i]S[i + 1] · · ·S[j] of S. To be able to refer
to the characters to the left and right of every character in S without worrying
about the first and last character, we define S[0] and S[n + 1] to be two distinct
characters not appearing anywhere else in S.

In order to formulate methods for finding repetitive structures in S, we need
a proper definition of such structures. An obvious definition is to find all pairs of
identical substrings in S. This, however, leads to a lot of redundant output, e.g.
in the string that consists of n identical characters there are Θ(n3) such pairs. To
limit the redundancy without sacrificing any meaningful structures Gusfield [9]
defines maximal pairs.

Definition 1 (Pair). We say that (i, j, |α|) is a pair of α in S formed by i and j
if and only if 1 ≤ i < j ≤ n−|α|+1 and α = S[i .. i+ |α|−1] = S[j .. j + |α|−1].
The pair is left-maximal (right-maximal) if the characters to the immediate left
(right) of two occurrences of α are different, i.e. left-maximal if S[i−1] 6= S[j−1]
and right-maximal if S[i+ |α|] 6= S[j+ |α|]. The pair is maximal if it is right- and
left-maximal. The gap of a pair (i, j, |α|) is the number of characters j − i− |α|
between the two occurrences of α in S.

It follows from the definition that a string of length n in the worst case con-
tains Θ(n2) right-maximal pairs. The string an contains the worst case number
of right-maximal pairs but only Θ(n) maximal pairs. The string (aab)n/3 how-
ever contains Θ(n2) maximal pairs. This shows that the worst case number of
maximal pairs and right-maximal pairs in a string are asymptotically equal.

Figure 1 illustrates the occurrence of a pair. In some applications it might
be interesting only to find pairs that obey certain restrictions on the gap, e.g. to
filter out pairs of substrings that are overlapping or far apart and thus to reduce
the number of pairs to report. Using the “smaller-half trick”, see Sect. 3.1, and
Lemma 3 it is easy to prove that a string of length n in the worst case contains
Θ(n log n) right-maximal pairs with gap in an interval of constant size.

In this paper we present methods for finding all right-maximal and maximal
pairs (i, j, |α|) in S with gap in a bounded interval. These methods all use the
suffix tree of S as the fundamental data structure. We briefly review the suffix
tree and refer to [9] for a more comprehensive treatment.

Definition 2 (Suffix tree). The suffix tree T (S) of the string S is the com-
pressed trie of all suffixes of S. Each leaf in T (S) represents a suffix S[i .. n] of S
and is annotated with the index i. We refer to the set of indices stored at the

Finding Maximal Pairs with Bounded Gap 137

i

α α

gap

j

Fig. 1. An occurrence of a pair (i, j, |α|) with gap j − i− |α|.

leaves in the subtree rooted at node v as the leaf-list of v and denote it LL(v).
Each edge in T (S) is labelled with a nonempty substring of S such that the path
from the root to the leaf annotated with index i spells the suffix S[i .. n]. We refer
to the substring of S spelled by the path from the root to node v as the path-label
of v and denote it L(v).

The suffix tree T (S) can be constructed in time O(n) [26,20,25,7]. It follows
from the definition that all internal nodes in T (S) have out-degree between two
and |Σ|. We can turn the suffix tree T (S) into the binary suffix tree TB(S) by
replacing every node v in T (S) with out-degree d > 2 by a binary tree with d−1
internal nodes and d− 2 internal edges in which the d leaves are the d children
of node v. We label each new internal edge with the empty string such that
the d − 1 nodes replacing node v all have the same path-label as node v has
in T (S). Since T (S) has n leaves, constructing the binary suffix tree TB(S)
requires adding at most n− 2 new nodes. Since each new node can be added in
constant time, the binary suffix tree TB(S) can be constructed in time O(n).

The binary suffix tree is an essential component of our methods. Definition 2
implies that there is a node v in T (S) with path-label α if and only if α is the
longest common prefix of S[i .. n] and S[j .. n] for some 1 ≤ i < j ≤ n. In other
words, there is a node v with path-label α if and only if (i, j, |α|) is a right-
maximal pair in S. Since S[i + |α|] 6= S[j + |α|] the indices i and j cannot be
elements in the leaf-list of the same child of v. Using the binary suffix tree TB(S)
we can thus formulate the following lemma.

Lemma 3. There is a right-maximal pair (i, j, |α|) in S if and only if there is a
node v in the binary suffix tree TB(S) with path-label α and distinct children w1

and w2 where i ∈ LL(w1) and j ∈ LL(w2).

Lemma 3 gives an approach to find all right-maximal pairs in S; for every
internal node v in the binary suffix tree TB(S) consider the leaf-lists at its two
children w1 and w2, and for every element (i, j) in LL(w1) × LL(w2) report a
right-maximal pair (i, j, |α|) if i < j and (j, i, |α|) if j < i. To find all maximal
pairs in S the problem remains to filter out all right-maximal pairs that are not
left-maximal.

3 Pairs with Upper and Lower Bounded Gap

We want to find all maximal pairs (i, j, |α|) in S with gap between g1(|α|)
and g2(|α|), i.e. g1(|α|) ≤ j − i − |α| ≤ g2(|α|), where g1 and g2 are functions

138 Gerth Stølting Brodal et al.

��������������������
p

α

L(p, |α|) R(p, |α|)

|α| + g2(|α|) |α| + g2(|α|)
|α| + g1(|α|) |α| + g1(|α|)

Fig. 2. If (p, q, |α|) (respectively (q, p, |α|)) is a pair with gap between g1(|α|)
and g2(|α|), then one occurrence of α is at position p and the other occurrence
is at a position q in the interval R(p, |α|) (respectively L(p, |α|)) of positions.

that can be computed in constant time. An obvious approach is to generate all
maximal pairs in S and only report those with gap between g1(|α|) and g2(|α|),
but as shown above there might be asymptotically fewer maximal pairs in S
with gap between g1(|α|) and g2(|α|) than maximal pairs in S in total. We
therefore want to find all maximal pairs (i, j, |α|) in S with gap between g1(|α|)
and g2(|α|) without generating and considering all maximal pairs in S. A step
towards finding all maximal pairs with gap between g1(|α|) and g2(|α|) is to find
all right-maximal pairs with gap between g1(|α|) and g2(|α|).

Figure 2 shows that if one occurrence of α in a pair with gap between g1(|α|)
and g2(|α|) is at position p, then the other occurrence of α must be at a position q
in one of the two intervals L(p, |α|) = [p − |α| − g2(|α|) .. p − |α| − g1(|α|)] or
R(p, |α|) = [p + |α| + g1(|α|) .. p + |α| + g2(|α|)]. Together with Lemma 3 this
gives an approach to find all right-maximal pairs in S with gap between g1(|α|)
and g2(|α|); from every internal node v in the binary suffix tree TB(S) with
path-label α and children w1 and w2, we report for every p in LL(w1) the pairs
(p, q, |α|) for all q in LL(w2) ∩ R(p, |α|) and the pairs (q, p, |α|) for all q in
LL(w2) ∩ L(p, |α|).

To report right-maximal pairs efficiently using this procedure, we must be
able to find for every p in LL(w1), without looking at all the elements in LL(w2),
the proper elements q in LL(w2) to report it against. It turns out that search
trees make this possible. In this paper we use AVL trees, but other types of
search trees, e.g. (a, b)-trees [11] or red-black trees [8], can also be used as long
as they obey Lemmas 4 and 5 stated below. Before we can formulate algorithms
we review some useful facts about AVL trees.

3.1 Data Structures

An AVL tree T is a balanced search tree that stores an ordered set of elements.
AVL trees were introduced in [1], but are explained in almost every textbook on
data structures. We say that an element e is in T , or e ∈ T , if it is stored at a
node in T . For short notation we use e to denote both the element and the node
at which it is stored in T . We can keep links between the nodes in T in such a

Finding Maximal Pairs with Bounded Gap 139

way that we in constant time from the node e can find the nodes next(e) and
prev (e) storing the next and previous element in increasing order. We use |T | to
denote the size of T , i.e. the number of elements stored in T .

Efficient merging of two AVL trees is essential to our methods. Hwang and
Lin [12] show how to merge two sorted lists using the optimal number of com-
parisons. Brown and Tarjan [4] show how to implement merging of two height-
balanced search trees, e.g. AVL trees, in time proportional to the optimal num-
ber of comparisons. Their result is summarized in Lemma 4, which immediately
implies Lemma 5.

Lemma 4. Two AVL trees of size at most n and m can be merged in time
O(log

(
n+m

n

)
).

Lemma 5. Given a sorted list of elements e1, e2, . . . , en and an AVL tree T
of size at most m, m ≥ n, we can find qi = min

{
x ∈ T

∣∣ x ≥ ei

}
for all

i = 1, 2, . . . , n in time O(log
(
n+m

n

)
).

Proof. Construct the AVL tree of the elements e1, e2, . . . , en in time O(n). Merge
this AVL tree with T according to Lemma 4, except that whenever the merge-
algorithm would insert one of the elements e1, e2, . . . , en into T , we change the
merge-algorithm to report the neighbor of the element in T instead. This modi-
fication does not increase the running time. ut

The “smaller-half trick” is essential to several methods for finding tandem
repeats [5,2,24]. It says that the sum over all nodes v in an arbitrary binary tree
of size n of terms that are O(n1), where n1 ≤ n2 are the numbers of leaves in
the subtrees rooted at the two children of v, is O(n log n). Our methods rely on
a stronger version of the “smaller-half trick” hinted at in [21, Ex. 35] and used
in [22, Chap. 5, p. 84]; we summarize it in the following lemma.

Lemma 6. Let T be an arbitrary binary tree with n leaves. The sum over all
internal nodes v in T of terms that are O(log

(
n1+n2

n1

)
), where n1 and n2 are the

numbers of leaves in the subtrees rooted at the two children of v, is O(n log n).

Proof. As the terms are O(log
(
n1+n2

n1

)
) we can find constants, a and b, such that

the terms are upper bounded by a + b log
(
n1+n2

n1

)
. We will by induction in the

number of leaves of the binary tree prove that the sum is upper bounded by
(2n− 1)a + b log n!. As log n! = O(n log n) the lemma follows.

If T is a leaf then the upper bound holds vacuously. Now assume inductively
that the upper bound holds for all trees with at most n − 1 leaves. Let T be
a tree with n leaves where the number of leaves in the subtrees rooted at the
two children of the root are n1 < n and n2 < n. According to the induction
hypothesis the sum over all nodes in these two subtrees, i.e. the sum over all nodes
of T except the root, is bounded by (2n1−1)a+ b log n1!+ (2n2−1)a+ b log n2!
and thus the entire sum is bounded by

140 Gerth Stølting Brodal et al.

(2n1 − 1)a+b logn1! + (2n2 − 1)a + b log n2! + a + b log
(

n1 + n2

n1

)

= (2(n1 + n2)− 1)a + b logn1! + b log n2! +
b log(n1 + n2)!− b log n1!− b log n2!

= (2n− 1)a + b log n!

which proves the lemma. ut

3.2 Algorithms

We first describe an algorithm that finds all right-maximal pairs in S with
bounded gap using AVL trees to keep track of the elements in the leaf-lists
during a traversal of the binary suffix tree TB(S). We then extend it to find all
maximal pairs in S with bounded gap using an additional AVL tree to filter out
efficiently all right-maximal pairs that are not left-maximal. Both algorithms
run in time O(n log n + z) and space O(n), where z is the number of reported
pairs. In the following we assume, unless stated otherwise, that v is a node in the
binary suffix tree TB(S) with path-label α and children w1 and w2 named such
that |LL(w1)| ≤ |LL(w2)|. We say that w1 is the small child of v and that w2 is
the big child of v.

Right-Maximal Pairs with Upper and Lower Bounded Gap To find all
right-maximal pairs in S with gap between g1(|α|) and g2(|α|) we consider every
node v in the binary suffix tree TB(S) in a bottom-up fashion, e.g. during a depth-
first traversal. At every node v we use AVL trees storing the leaf-lists LL(w1)
and LL(w2) at its two children to report the proper right-maximal pairs of its
path-label α. The details are given in Algorithm 1 and explained below.

At every node v in TB(S) we construct an AVL tree, the leaf-list tree T ,
that stores the elements in LL(v). If v is a leaf then we construct T directly
in Step 1. If v is an internal node then LL(v) is the union of the disjoint leaf-
lists LL(w1) and LL(w2) which by assumption are stored in the already con-
structed T1 and T2, so we construct T by merging T1 and T2, |T1| ≤ |T2|, using
Lemma 4. Before constructing T in Step 2c we use T1 and T2 to report right-
maximal pairs from node v by reporting every p in LL(w1) against every q in
LL(w2)∩L(p, |α|) and LL(w2)∩R(p, |α|). This is done in two steps. In Step 2a
we find for every p in LL(w1) the minimum element qr(p) in LL(w2)∩R(p, |α|)
and the minimum element ql(p) in LL(w2) ∩ L(p, |α|) by searching in T2 us-
ing Lemma 5. In Step 2b we report pairs (p, q, |α|) and (q, p, |α|) for every p in
LL(w1) and increasing q’s in LL(w2) starting with qr(p) and ql(p) respectively,
until the gap violates the upper or lower bound.

To argue that Algorithm 1 finds all right-maximal pairs with gap between
g1(|α|) and g2(|α|) it is enough to argue that we for every p in LL(w1) re-
port all right-maximal pairs (p, q, |α|) and (q, p, |α|) with gap between g1(|α|)
and g2(|α|). The rest follows because we at every node v in TB(S) consider ev-
ery p in LL(w1). Consider the call Report(qr(p), p + |α| + g2(|α|)) in Step 2b.

Finding Maximal Pairs with Bounded Gap 141

Algorithm 1 Find all right-maximal pairs in string S with bounded gap.

1. Initializing: Build the binary suffix tree TB(S) and create at each leaf an AVL tree
of size one that stores the index at the leaf.

2. Reporting and merging: When the AVL trees T1 and T2, |T1| ≤ |T2|, at the two
children w1 and w2 of node v with path-label α are available, we do the following:

(a) Let {p1, p2, . . . , ps} be the elements in T1 in sorted order. For each element p
in T1 we find

qr(p) = min
�
x ∈ T2

�
� x ≥ p + |α|+ g1(|α|)

	

ql(p) = min
�
x ∈ T2

�
� x ≥ p− |α| − g2(|α|)

	

by searching in T2 with the sorted lists {pi + |α|+ g1(|α|) | i = 1, 2, . . . , s} and
{pi − |α| − g2(|α|) | i = 1, 2, . . . , s} using Lemma 5.

(b) For each element p in T1 we do Report(qr(p), p + |α| + g2(|α|)) and
Report(ql(p), p− |α| − g1(|α|)) where Report is the following procedure.

def Report(from, to) :
q = from
while q ≤ to :

report pair (p, q, |α|) if p < q, and (q, p, |α|) otherwise
q = next(q)

(c) Build the leaf-list tree T at node v by merging T1 and T2 using Lemma 4.

From the implementation of Report follows that this call reports p against ev-
ery q in LL(w2) ∩ [qr(p) .. p + |α| + g2(|α|)]. By construction of qr(p) and def-
inition of R(p, |α|) follows that LL(w2) ∩ [qr(p) .. p + |α| + g2(|α|)] is equal to
LL(w2)∩R(p, |α|), so the call reports all pairs (p, q, |α|) with gap between g1(|α|)
and g2(|α|). Similarly we can argue that the call Report(ql(p), p− |α| − g1(|α|))
reports all pairs (q, p, |α|) with gap between g1(|α|) and g2(|α|).

Now consider the running time of Algorithm 1. Building the binary suffix
tree TB(S) and creating an AVL tree of size one at each leaf in Step 1 takes
time O(n). At every internal node in TB(S) we do Step 2. Since |T1| ≤ |T2|
searching in Step 2a and merging in Step 2c takes time O(log

(|T1|+|T2|
|T1|

)
) by

Lemmas 5 and 4 respectively. Reporting of pairs in Step 2b takes time pro-
portional to |T1|, because we consider every p in LL(w1), plus the number of
reported pairs. Summing this over all nodes gives by Lemma 6 that the total
running time is O(n log n + z), where z is the number of reported pairs. Since
constructing and keeping TB(S) requires space O(n), and since no element at
any time is in more than one leaf-list tree, Algorithm 1 requires space O(n).

Theorem 7. Algorithm 1 finds all right-maximal pairs (i, j, |α|) in a string S
with gap between g1(|α|) and g2(|α|) in space O(n) and time O(n log n + z),
where z is the number of reported pairs and n is the length of S.

142 Gerth Stølting Brodal et al.

Maximal Pairs with Upper and Lower Bounded Gap We now turn to-
wards finding all maximal pairs in S with gap between g1(|α|) and g2(|α|). Our
approach to find all maximal pairs in S with gap between g1(|α|) and g2(|α|) is to
extend Algorithm 1 to filter out all right-maximal pairs that are not left-maximal.
A simple solution is to extend the procedure Report to check if S[p−1] 6= S[q−1]
before reporting the pair (p, q, |α|) or (q, p, |α|) in Step 2b. This solution takes
time proportional to the number of inspected right-maximal pairs, and not time
proportional to the number of reported maximal pairs. Even though the max-
imum number of right-maximal pairs and maximal pairs in strings of a given
length are asymptotically equal, many strings contain significantly fewer max-
imal pairs than right-maximal pairs. We therefore want to filter out all right-
maximal pairs that are not left-maximal without inspecting all right-maximal
pairs. In the remainder of this section we describe one way to do this.

Consider the reporting step in Algorithm 1 and assume that we are about to
report from a node v with children w1 and w2. The leaf-list trees T1 and T2,
|T1| ≤ |T2|, are available and they make it possible to access the elements
in LL(w1) = {p1, p2, . . . , ps} and LL(w2) = {q1, q2, . . . , qt} in sorted order. We
divide the sorted leaf-list LL(w2) into blocks of contiguous elements such that
the elements qi−1 and qi are in the same block if and only if S[qi−1−1] = S[qi−1].
We say that we divide the sorted leaf-list into blocks of elements with equal left-
characters. To filter out all right-maximal pairs that are not left-maximal we
must avoid to report p in LL(w1) against any element q in LL(w2) in a block of
elements with left-character S[p− 1]. This gives the overall idea of the extended
algorithm; we extend the reporting step in Algorithm 1 such that whenever we
are about to report p in LL(w1) against q in LL(w2) where S[p− 1] = S[q − 1]
we skip all elements in the current block containing q and continue reporting p
against the first element q′ in the following block, which by the definition of
blocks satisfies that S[p− 1] 6= S[q′ − 1].

To implement this extended reporting step efficiently we must be able to
skip all elements in a block without inspecting each of them. We achieve this
by constructing an additional AVL tree, the block-start tree, that keeps track of
the blocks in the leaf-list. At each node v during the traversal of TB(S) we thus
construct two AVL trees; the leaf-list tree T that stores the elements in LL(v),
and the block-start tree B that keeps track of the blocks in the sorted leaf-list
by storing all the elements in LL(v) that start a block. We keep links from the
block-start tree to the leaf-list tree such that we in constant time can go from an
element in the block-start tree to the corresponding element in the leaf-list tree.
Figure 3 illustrates the leaf-list tree, the block-start tree and the links between
them. Before we present the extended algorithm and explain how to use the
block-start tree to efficiently skip all elements in a block, we first describe how
to construct the leaf-list tree T and block-start tree B at node v from the leaf-list
trees, T1 and T2, and block-start trees, B1 and B2, at its two children w1 and w2.

Since LL(v) is the union of the disjoint leaf-lists LL(w1) and LL(w2) stored
in T1 and T2 respectively, we can construct the leaf-list tree T by merging T1

and T2 using Lemma 4. It is more involved to construct the block-start tree B.

Finding Maximal Pairs with Bounded Gap 143

B

e7 e8e4 e5 e6

T

e1 e4 e7e1 e2 e3

Fig. 3. The data structure constructed at each node v in TB(S). The leaf-list
tree T stores all elements in LL(v). The block-start tree B stores all elements
in LL(v) that start a block in the sorted leaf-list. We keep links from the elements
in the block-start tree to the corresponding elements in the leaf-list tree.

The reason is that an element pi that starts a block in LL(w1) or an element qj

that starts a block in LL(w2) does not necessarily start a block in LL(v) and vice
versa, so we cannot construct B by merging B1 and B2. Let {e1, e2, . . . , es+t}
be the elements in LL(v) in sorted order. By definition the block-start tree B
contains all elements ek in LL(v) where S[ek−1−1] 6= S[ek−1]. We construct B
by modifying B2. We choose to modify B2, and not B1, because |LL(w1)| ≤
|LL(w2)|, which by the “smaller-half trick” allows us to consider all elements
in LL(w1) without spending too much time in total. To modify B2 to become B
we must identify all the elements that are in B but not in B2 and vice versa.

Lemma 8. If ek is in B but not in B2 then ek ∈ LL(w1) or ek−1 ∈ LL(w1).

Proof. Assume that ek is in B and that ek and ek−1 both are in LL(w2).
In LL(w2) the elements ek and ek−1 are neighboring elements qj and qj−1.
Since ek starts a block in LL(v) then S[qj − 1] = S[ek − 1] 6= S[ek−1 − 1] =
S[qj−1 − 1]. This shows that qj = ek is in B2 and the lemma follows. ut

Let NEW be the set of elements ek in B where ek or ek−1 are in LL(w1). It
follows from Lemma 8 that this set contains at least all elements in B that are
not in B2. It is easy to see that we can construct NEW in sorted order while
merging T1 and T2; whenever an element ek from T1, i.e. LL(w1), is placed in T ,
i.e. LL(v), we include it, and/or the next element ek+1 placed in T , in NEW if
they start a block in LL(v).

If we insert the elements in NEW we are halfway done modifying B2 to
become B. We still need to identify and remove the elements that should be
removed from B2, that is, the elements that are in B2 but not in B.

Lemma 9. An element qj in B2 is not in B if and only if the largest element ek

in NEW smaller than qj in B2 has the same left-character as qj.

Proof. If qj is in B2 but does not start a block in LL(v), then it must be in a
block started by some element ek with the same left-character as qj . This block

144 Gerth Stølting Brodal et al.

cannot contain qj−1 because qj being in B2 implies that S[qj − 1] 6= S[qj−1 − 1].
We thus have the ordering qj−1 < ek < qj . This implies that ek is the largest
element in NEW smaller than qj . If ek is the largest element in NEW smaller
than qj , then no block starts in LL(v) between ek and qj , i.e. all elements e in
LL(v) where ek < e < qj satisfy that S[e−1] = S[ek−1], so if S[ek−1] = S[qj−1]
then qj does not start a block in LL(v). ut

By searching in B2 with the sorted list NEW using Lemma 5 it is straight-
forward to find all pairs of elements (ek, qj), where ek is the largest element in
NEW smaller than qj in B2. If the left-characters of ek and qj in such a pair
are equal, i.e. S[ek − 1] = S[qj − 1], then by Lemma 9 the element qj is not in B
and must therefore be removed from B2. It follows from the proof of Lemma 9
that if this is the case then qj−1 < ek < qj , so we can, without destroying the
order among the nodes in B2, remove qj from B2 and insert ek instead, simply
by replacing the element qj with the element ek at the node storing qj in B2.

We can now summarize the three steps it takes to modify B2 to become B.
In Step 1 we construct the sorted set NEW that contains all elements in B
that are not in B2. This is done while merging T1 and T2 using Lemma 4. In
Step 2 we remove the elements from B2 that are not in B. The elements in B2

being removed and the elements from NEW replacing them are identified using
Lemmas 5 and 9. In Step 3 we merge the remaining elements in NEW into the
modified B2 using Lemma 4. Adding links from the new elements in B to the
corresponding elements in T can be done while replacing and merging in Steps 2
and 3. Since |NEW | ≤ 2 |T1| and |B2| ≤ |T2|, the time it takes to construct B
is dominated by the the time it takes merge a sorted list of size 2 |T1| into an
AVL tree of size |T2|. By Lemma 4 this is within a constant factor of the time it
takes to merge T1 and T2, so the time is takes to construct B is dominated by
the time it takes to construct the leaf-list tree T .

Now that we know how to construct the leaf-list tree T and block-start tree B
at node v from the leaf-list trees, T1 and T2, and block-start trees, B1 and B2,
at its two children w1 and w2, we can proceed with the implementation of the
extended reporting step. The details are shown in Algorithm 2. This algorithm
is similar to Algorithm 1 except that we at every node v in TB(S) construct
two AVL trees; the leaf-list tree T that stores the elements in LL(v), and the
block-start tree B that keeps track of the blocks in LL(v) by storing the subset
of elements that start a block. If v is a leaf, we construct T and B directly. If v
is an internal node, we construct T by merging the leaf-list trees T1 and T2 at
its two children w1 and w2, and we construct B by modifying the block-start
tree B2 as explained above.

Before constructing T and B we report all maximal pairs from node v with
gap between g1(|α|) and g2(|α|) by reporting every p in LL(w1) against every q in
LL(w2)∩L(p, |α|) and LL(w2)∩R(p, |α|) where S[p−1] 6= S[q−1]. This is done in
two steps. In Step 2a we find for every p in LL(w1) the minimum elements ql(p)
and qr(p), as well as the minimum elements bl(p) and br(p) that start a block, in
LL(w2)∩L(p, |α|) and LL(w2)∩R(p, |α|) respectively. This is done by searching
in T2 and B2 using Lemma 5. In Step 2b we report pairs (p, q, |α|) and (q, p, |α|)

Finding Maximal Pairs with Bounded Gap 145

Algorithm 2 Find all maximal pairs in string S with bounded gap.

1. Initializing: Build the binary suffix tree TB(S) and create at each leaf two AVL
trees of size one, the leaf-list and the block-start tree, both storing the index at
the leaf.

2. Reporting and merging: When the leaf-list trees T1 and T2, |T1| ≤ |T2|, and the
block-start trees B1 and B2 at the two children w1 and w2 of node v with path-label
α are available, we do the following:

(a) Let {p1, p2, . . . , ps} be the elements in T1 in sorted order. For each element p
in T1 we find

qr(p) = min
�
x ∈ T2

�
� x ≥ p + |α|+ g1(|α|)

	

ql(p) = min
�
x ∈ T2

�� x ≥ p− |α| − g2(|α|)
	

br(p) = min
�
x ∈ B2

�
� x ≥ p + |α|+ g1(|α|)

	

bl(p) = min
�
x ∈ B2

�
� x ≥ p− |α| − g2(|α|)

	

by searching in T2 and B2 with the sorted lists {pi + |α| + g1(|α|) | i =
1, 2, . . . , s} and {pi − |α| − g2(|α|) | i = 1, 2, . . . , s} using Lemma 5.

(b) For each element p in T1 we do ReportMax(qr(p), br(p), p + |α| + g2(|α|)) and
ReportMax(ql(p), bl(p), p− |α|− g1(|α|)) where ReportMax is the following pro-
cedure.

def ReportMax(from T , from B , to):
q = from T
b = from B
while q ≤ to:

if S[q − 1] 6= S[p− 1]:
report pair (p, q, |α|) if p < q, and (q, p, |α|) otherwise
q = next(q)

else:
while b ≤ q:

b = next(b)
q = b

(c) Build the leaf-list tree T at node v by merging T1 and T2 using Lemma 4.
Build the block-start tree B at node v by modifying B2 as described in the
text.

for every p in LL(w1) and increasing q’s in LL(w2) starting with qr(p) and ql(p)
respectively, until the gap violates the upper or lower bound. Whenever we are
about to report p against q where S[p− 1] = S[q− 1], we instead use the block-
start tree B2 to skip all elements in the block containing q and continue with
reporting p against the first element in the following block.

To argue that Algorithm 2 finds all maximal pairs with gap between g1(|α|)
and g2(|α|) it is enough to argue that we for every p in LL(w1) report all maxi-
mal pairs (p, q, |α|) and (q, p, |α|) with gap between g1(|α|) and g2(|α|). The rest
follows because we at every node in TB(S) consider every p in LL(w1). Consider

146 Gerth Stølting Brodal et al.

the call ReportMax(qr(p), br(p), p + |α| + g2(|α|)) in Step 2b. From the imple-
mentation of ReportMax follows that unless we skip elements by increasing b
then we consider every q in LL(w2) ∩ R(p, |α|). The test S[q − 1] 6= S[p − 1]
before reporting a pair ensures that we only report maximal pairs and when-
ever S[q − 1] = S[p − 1] we increase b until b = min{x ∈ B2 | x > q}. This
is, by construction of B2 and br(p), the element that starts the block follow-
ing the block containing q, so all elements q′, q < q′ < b, we skip by set-
ting q to b satisfy that S[p − 1] = S[q − 1] = S[q′ − 1]. We thus conclude that
ReportMax(qr(p), br(p), p + |α| + g2(|α|)) reports p against exactly those q in
LL(w2) ∩ R(p, |α|) where S[p − 1] 6= S[q − 1], i.e. it reports all maximal pairs
(p, q, |α|) at node v with gap between g1(|α|) and g2(|α|). Similarly, the call
ReportMax(ql(p), bl(p), p− |α|− g1(|α|)) reports all maximal pairs (q, p, |α|) with
gap between g1(|α|) and g2(|α|).

Now consider the running time of Algorithm 2. We first argue that the call
ReportMax(qr(p), br(p), p + |α| + g2(|α|)) takes constant time plus time propor-
tional to the number of reported pairs (p, q, |α|). To do this all we have to show
is that the time used to skip blocks, i.e. the number of times we increase b, is
proportional to the number of reported pairs. By construction br(p) ≥ qr(p),
so the number of times we increase b is bounded by the number of blocks in
LL(w2)∩R(p, |α|). Since neighboring blocks contain elements with different left-
characters, we report p against an element from at least every second block in
LL(w2) ∩ R(p, |α|). The number of times we increase b is thus proportional to
the number of reported pairs. The call ReportMax(ql(p), bl(p), p − |α| − g1(|α|))
also takes constant time plus time proportional to the number of reported pairs
(q, p, |α|). We thus have that Step 2b takes time proportional to |T1| plus the
number of reported pairs. Everything else we do at node v, i.e. searching in T2

and B2 and constructing the leaf-list tree T and block-start tree B, takes time
O(log

(|T1|+|T2|
|T1|

)
). Summing this over all nodes gives by Lemma 6 that the total

running time of the algorithm is O(n log n+z) where z is the number of reported
pairs. Since constructing and keeping TB(S) requires space O(n), and since no
element at any time is in more than one leaf-list tree, and maybe one block-start
tree, Algorithm 2 requires space O(n).

Theorem 10. Algorithm 2 finds all maximal pairs (i, j, |α|) in a string S with
gap between g1(|α|) and g2(|α|) in space O(n) and time O(n log n + z), where z
is the number of reported pairs and n is the length of S.

We observe that Algorithm 2 never uses the block-start tree B1 at the small
child w1. This observation can be used to ensure that only one block-start tree ex-
ists during the execution of the algorithm. If we implement the traversal of TB(S)
as a depth-first traversal in which we at each node v first recursively traverse the
subtree rooted at the small child w1, then we do not need to store the block-start
tree returned by this recursive traversal while recursively traversing the subtree
rooted at the big child w2. This implies that only one block-start tree exists at
all times during the recursive traversal of TB(S). The drawback is that we at
each node v need to know in advance which child is the small child, but this

Finding Maximal Pairs with Bounded Gap 147

knowledge can be obtained in linear time by annotating each node with the size
of the subtree it roots.

4 Pairs with Lower Bounded Gap

If we relax the constraint on the gap and only want to find all maximal pairs
in S with gap at least g(|α|), where g is a function that can be computed
in constant time, then a straightforward solution is to use Algorithm 2 with
g1(|α|) = g(|α|) and g2(|α|) = n. This obviously finds all maximal pairs with
gap at least g1(|α|) = g(|α|) in time O(n log n + z). However, the missing upper
bound on the gap, i.e. the trivial upper bound g2(|α|) = n, makes it possible to
reduce the running time to O(n + z) since reporting from each node during the
traversal of the binary suffix tree is simplified.

The reporting of pairs from node v with children w1 and w2 is simplified,
because the lack of an upper bound on the gap implies that we do not have
to search LL(w2) for the first element to report against the current element
in LL(w1). Instead we can start by reporting the current element in LL(w1)
against the biggest (and smallest) element in LL(w2) and then continue report-
ing it against decreasing (and increasing) elements from LL(w2) until the gap
becomes smaller than g(|α|). Unfortunately this simplification alone does not re-
duce the asymptotic running time because inspecting every element in LL(w1)
and keeping track of the leaf-lists in AVL trees alone requires time Θ(n log n). To
reduce the running time we must thus avoid to inspect every element in LL(w1)
and find another way to store the leaf-lists.

We achieve this by using a data structure based on heap-ordered trees to
store the leaf-lists during the traversal of the binary suffix tree. The key feature
of the data structure is that it allows us to merge two trees in amortized constant
time. The details of the data structure and the methods using it to find pairs
with gap at least g(|α|) is given in [3, Sect. 4]. Here we just summarize the result.

Theorem 11. All maximal pairs (i, j, |α|) in a string S with gap at least g(|α|)
can be found in space O(n) and time O(n+z), where z is the number of reported
pairs and n is the length of S.

5 Conclusion

We have presented efficient and flexible methods to find all maximal pairs
(i, j, |α|) in a string under various constraints on the gap j − i− |α|. If the gap
is required to be between g1(|α|) and g2(|α|), the running time is O(n log n + z)
where n is the length of the string and z is the number of reported pairs. If the
gap is only required to be at least g1(|α|), the running time reduces to O(n+ z).
In both cases we use space O(n).

In some cases it might be interesting only to find maximal pairs (i, j, |α|)
fulfilling additional requirements on |α|, e.g. to filter out pairs of short substrings.
This is straightforward to do using our methods by only reporting from the nodes

148 Gerth Stølting Brodal et al.

in the binary suffix tree whose path-label α fulfills the requirements on |α|. In
other cases it might be of interest just to find the vocabulary of substrings that
occur in maximal pairs. This is also straightforward to do using our methods by
just reporting the path-label α of a node if we can report one or more maximal
pairs from the node.

Instead of just looking for maximal pairs, it could be interesting to look
for an array of occurrences of the same substring in which the gap between
consecutive occurrences is bounded by some constants. This problem requires a
suitable definition of a maximal array. One definition and approach is presented
in [23]. Another definition inspired by the definition of a maximal pair could
be to require that every pair of occurrences in the array is a maximal pair.
This definition seems very restrictive. A more relaxed definition could be to only
require that we cannot extend all the occurrences in the array to the left or to
the right without destroying at least one pair of occurrences in the array.

Acknowledgments This work was initiated while Christian N. S. Pedersen and Jens

Stoye were visiting Dan Gusfield at UC Davis. We would like to thank Dan Gusfield,

as well as Rob Irwing, for listening to some preliminary results.

References

1. G. M. Adel’son-Vel’skii and Y. M. Landis. An algorithm for the organization of
information. Doklady Akademii Nauk SSSR, 146:263–266, 1962. English translation
in Soviet Math. Dokl., 3:1259–1262.

2. A. Apostolico and F. P. Preparata. Optimal off-line detection of repetitions in a
string. Theoretical Computer Science, 22:297–315, 1983.

3. G. S. Brodal, R. B. Lyngsø, C. N. S. Pedersen, and J. Stoye. Finding maximal
pairs with bounded gap. Technical Report RS-99-12, BRICS, April 1999.

4. M. R. Brown and R. E. Tarjan. A fast merging algorithm. Journal of the ACM,
26(2):211–226, 1979.

5. M. Crochemore. An optimal algorithm for computing the repetitions in a word.
Information Processing Letters, 12(5):244–250, 1981.

6. M. Crochemore. Tranducers and repetitions. Theoretical Computer Science, 45:63–
86, 1986.

7. M. Farach. Optimal suffix tree construction with large alphabets. In Proceedings of
the 38th Annual Symposium on Foundations of Computer Science (FOCS), pages
137–143, 1997.

8. L. J. Guibas and R. Sedgewick. A dichromatic framework for balanced trees. In
Proceedings of the 19th Annual Symposium on Foundations of Computer Science
(FOCS), pages 8–21, 1978.

9. D. Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology. Cambridge University Press, 1997.

10. D. Gusfield and J. Stoye. Linear time algorithms for finding and representing
all the tandem repeats in a string. Technical Report CSE-98-4, Department of
Computer Science, UC Davis, 1998.

11. S. Huddleston and K. Mehlhorn. A new data structure for representing sorted lists.
Acta Informatica, 17:157–184, 1982.

Finding Maximal Pairs with Bounded Gap 149

12. F. K. Hwang and S. Lin. A simple algorithm for merging two disjoint linearly
ordered sets. SIAM Journal on Computing, 1(1):31–39, 1972.

13. S. Karlin, M. Morris, G. Ghandour, and M.-Y. Leung. Efficient algorithms for
molecular sequence analysis. Proceedings of the National Academy of Science,
USA, 85:841–845, 1988.

14. R. Kolpakov and G. Kucherov. Maximal repetitions in words or how to find all
squares in linear time. Technical Report 98-R-227, LORIA, 1998.

15. S. R. Kosaraju. Computation of squares in a string. In Proceedings of the 5th
Annual Symposium on Combinatorial Pattern Matching (CPM), volume 807 of
Lecture Notes in Computer Science, pages 146–150, 1994.

16. G. M. Landau and J. P. Schmidt. An algorithm for approximate tandem repeats.
In Proceedings of the 4th Annual Symposium on Combinatorial Pattern Matching
(CPM), volume 684 of Lecture Notes in Computer Science, pages 120–133, 1993.

17. M.-Y. Leung, B. E. Blaisdell, C. Burge, and S. Karlin. An efficient algorithm for
identifying matches with errors in multiple long molecular sequences. Journal of
Molecular Biology, 221:1367–1378, 1991.

18. M. G. Main and R. J. Lorentz. An O(n log n) algorithm for finding all repetitions
in a string. Journal of Algorithms, 5:422–432, 1984.

19. M. G. Main and R. J. Lorentz. Linear time recognition of squarefree strings. In
A. Apostolico and Z. Galil, editors, Combinatorial Algorithms on Words, volume
F12 of NATO ASI Series, pages 271–278. Springer, Berlin, 1985.

20. E. M. McCreight. A space-economical suffix tree construction algorithm. Journal
of the ACM, 23(2):262–272, 1976.

21. K. Mehlhorn. Sorting and Searching, volume 1 of Data Structures and Algorithms.
Springer-Verlag, 1994.

22. K. Mehlhorn and S. Näher. The LEDA Platform of Combinatorial and Geometric
Computing. Cambridge University Press, 1999. To appear. See http://www.mpi-
sb.mpg.de/∼mehlhorn/LEDAbook.html.

23. M.-F. Sagot and E. W. Myers. Identifying satellites in nucleic acid sequences. In
Proceedings of the 2nd Annual International Conference on Computational Molec-
ular Biology (RECOMB), pages 234–242, 1998.

24. J. Stoye and D. Gusfield. Simple and flexible detection of contiguous repeats
using a suffix tree. In Proceedings of the 9th Annual Symposium on Combinatorial
Pattern Matching (CPM), volume 1448 of Lecture Notes in Computer Science,
pages 140–152, 1998.

25. E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14:249–260, 1995.
26. P. Weiner. Linear pattern matching algorithms. In Proceedings of the 14th Sym-

posium on Switching and Automata Theory, pages 1–11, 1973.

A Dynamic Data Structure for Reverse

Lexicographically Sorted Prefixes

Hidetoshi Yokoo?

Department of Computer Science, Gunma University
Kiryu 376–8515, Japan

yokoo@cs.gunma-u.ac.jp

Abstract. This paper proposes a simple data structure, called a prefix
list, which maintains all prefixes of a string in reverse lexicographic order.
It can be on-line incrementally constructed in time and space linear in
the string length. It is strongly related to suffix trees and suffix arrays,
and may share applications with these existing structures. A suffix array
can be built via the corresponding prefix list in linear time. Particular
applications of the prefix list lie in source-coding problems that require
on-line right-to-left string matching. We apply the prefix list to on-line
estimation of source entropy and to context-based symbol-ranking text
compression algorithms.

1 Introduction

We propose a simple data structure, called the prefix list, which can store all
prefixes of a string in reverse lexicographic order. A prefix list can be on-line
incrementally constructed in time and space linear in the string length. We can
apply it to string matching problems and to data compression algorithms.

The proposed data structure is deeply related to such index structures as
suffix trees [4], [10], [12] and suffix arrays [8], [6]. The suffix array for a text is
an array of integers which represent lexicographic orders of all suffixes of the
text. It was proposed as a space-efficient alternative to the more ubiquitous
suffix tree. Whether we use suffix trees or suffix arrays, we usually suppose a
text to be static and fixed in the sense that we preprocess it to accept multiple
queries afterwards. In particular, a suffix array must be constructed from scratch
even if a bit of modification is added to the text. In some actual situations, we
must answer index-based string-matching problems while incrementally reading
a text. A suffix tree, which can be constructed in an on-line manner, serves as
a strong tool in such situations. However, since strings are represented in one
direction from the root to leaves on a suffix tree, it is difficult to match strings
from right to left. We actually have some on-line string problems, in which we
should match strings in that direction.

? Partially supported by the Kayamori foundation of informational science advance-
ment and by the Okawa foundation for information and telecommunications.

M. Crochemore, M. Paterson (Eds.): CPM’99, LNCS 1645, pp. 150–162, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

A Dynamic Data Structure for Reverse Lexicographically Sorted Prefixes 151

Such situations sometimes arise in the context modeling stage in text com-
pression. In most symbolwise (predictive) text compression algorithms, an up-
coming symbol is predicted on the basis of its context. Such a “context-based”
method gathers previous contexts according to their similarities to the current
context. This requires an on-line right-to-left string matching process. Actually,
the prefix list presented in this paper was initially suggested as an adaptive im-
plementation of the context table, which was proposed as a common basis for
representing text compression algorithms [15]. The most straightforward appli-
cation of the prefix list is the context-sorting text compression algorithm [14].
It virtually prepares a ranked list of all possible symbols, ordered from most
likely to least likely, but actually gives ranks to symbol candidates by searching
a sorted list of previous contexts, sorted in reverse lexicographic order. In Matias
et al. [9], in which the implementation of similar algorithms was referred to as
the HYZ compression problem, the authors proposed to augment suffix trees to
solve the problem.

A prefix list represents every prefix in a string as a node in a doubly-linked
linear list. It is similar to the suffix tree in that on-line incremental construction is
possible, and to the suffix array in that lexicographic linear order is incorporated.
It seems that we need O(n2) time to construct a prefix list from a text of length n.
However, if the text is an output from a finite-order Markov source, the expected
complexity is reduced to O(n). For a pattern generated from the same source,
we can match it with the text in time linear in the pattern length.

In the next section, we define the prefix list and give an on-line procedure for
its construction. We show that we can build it from a Markovian text in linear
time. In Section 3, we slightly augment the prefix list to apply it to estimating
the entropy of an actual text. Section 4 briefly reviews the context-sorting text
compression algorithm, which motivates the development of prefix list. Section
5 is a survey of other possible applications.

2 Proposed Data Structure and Its Construction

Let
S[1..n] = s1s2 · · · sn (si ∈ Σ, 1 ≤ i ≤ n) (1)

be an n-symbol string over an ordered alphabet Σ of size |Σ|. We represent a
substring si · · · sj as S[i..j] and define S[i..j] = ε, the empty string, for i > j.
The prefix of a string S[1..n] that ends at position i is S[1..i], and the suffix that
begins at position i is S[i..n]. The ith symbol si is also denoted by S[i].

Based on the ordering relation on Σ, we can define its associated lexico-
graphic order on the set of all strings. Reverse lexicographic ordering is lex-
icographic ordering of reversed strings. For example, the word ‘dog’ reverse-
lexicographically (re-lexically, for short) precedes the word ‘deer’ since ‘god’
lexically precedes ‘reed’. Our new data structure maintains a re-lexically sorted
set of all the prefixes of S[1..n]. As an example, consider the string:

S[1..9] = yabrecabr, (2)

152 Hidetoshi Yokoo

S[1..0] = ε
S[1..7] = yabreca

S[1..2] = ya

S[1..8] = yabrecab

S[1..3] = yab

S[1..6] = yabrec

S[1..5] = yabre

S[1..9] = yabrecabr

S[1..4] = yabr

S[1..1] = y

Fig. 1. Re-lexically sorted list of
prefixes of S[1..9] = ‘yabrecabr’.

sorted
ε y

yabreca b
ya b

yabrecab r
yab r

yabrec a
yabre c

yabrecabr s10

yabr e
y a

↑·↓

Fig. 2. Inserting the next prefix. The up-
coming symbol is compared with the follow-
ing symbols.

in which the ten prefixes including the empty string are re-lexically sorted in the
order shown in Fig. 1.

For a pair of two adjacent prefixes in a re-lexically sorted list of prefixes, if a
prefix S[1..j] immediately follows S[1..i], then the prefix S[1..j] is said to be the
immediate successor of S[1..i] and, conversely, S[1..i] is said to be the immediate
predecessor of S[1..j]. We can insert an upcoming prefix into the re-lexically
sorted list of previously occurred prefixes in a simple way. Consider again the
example in (2), which may be followed by some symbol s10. If the same symbol
as s10 has not appeared so far, then the reverse lexicographic order of S[1..10]
is determined only by its last symbol s10. Otherwise, that is, if we have already
had s10 in S[1..9], then we can find the position of S[1..10] by searching the
so-far occurred symbols for the match with s10. As shown in Fig. 2, starting
from the position corresponding to s10, we search bidirectionally the following
symbols of the sorted prefixes for the same symbol as s10. If we hit a symbol
si =s10 in the ↑ direction, we should insert S[1..10] as the immediate successor
of S[1..i]. Conversely, if we find the same symbol as s10 in the ↓ direction then
we should insert S[1..10] as the immediate predecessor of S[1..i]. These can be
validated by the recursive property of reverse lexicographic order. As a specific
example, suppose that we have s10 = ‘e’ in the example in Fig. 2. Then, we
immediately reach s5 =‘e’ in the ↓ direction. This implies that we should insert
S[1..10] = ‘yabrecabre’ as the immediate predecessor of S[1..5]. Another case
may have s10 =‘a’. In this case, we hit either s7 =‘a’ in the ↑ direction or s2 =‘a’
in the ↓ direction. In any of both cases, the position of S[1..10] = ‘yabrecabra’
in the re-lexically sorted list of these prefixes is known to be between S[1..7] and
S[1..2].

The prefix list is natural realization of the above idea. It is implemented as a
doubly-linked linear list in which each element, or node, contains one integer and
three pointers. The three pointers are pred and succ list pointers used to organize
the doubly-linked list and next pointer used to designate the next position in
the input string. Every prefix in a string is represented by a node of the list. If a
node corresponds to the ith prefix S[1..i], then its integer field contains the value

A Dynamic Data Structure for Reverse Lexicographically Sorted Prefixes 153

� �

� �

?

?

-
� P ↑.indx

P

P ↑.pred P ↑.succ

P ↑.next

Fig. 3. Node representing
S[1..P ↑.indx].

...
... y

...
...

...
...

c y a a e r b b
ε a a b b c e r r y

H #1 #2 #3 #4 #5 #6 #7 #8 #9

0 ⇀↽ 7 ⇀↽ 2 ⇀↽ 8 ⇀↽ 3 ⇀↽ 6 ⇀↽ 5 ⇀↽ 9 ⇀↽ 4 ⇀↽ 1
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

#9 #3 #4 #7 #8 #1 #5 nil #6 #2

Fig. 4. Prefix list for ‘yabrecabr’.

of position index i. Its pred and succ pointers point to nodes corresponding to
the immediate predecessor and immediate successor of S[1..i], respectively. The
next pointer in the node for S[1..i] points to the node for S[1..i + 1]. If a node
corresponds to the entire string S[1..n], then its next pointer is set to nil. The
initial state of a prefix list consists of a single special node H , which represents
the empty string. We may add an extra node T into the end of a prefix list
in order to simplify some list operations. If we schematically represent a node
pointed to by a pointer P as is shown in Fig. 3, in which the left (←) and right
(→) arrows represent the pred and succ pointers, respectively, and the vertical
arrow (↓) represents the next pointer, then our sample string in (2) is represented
by the list shown in Fig. 4.

As mentioned above, a prefix list can be constructed incrementally in an on-
line manner. Assume that the list representing all prefixes of an initial segment
S[1..i] has been already constructed and that the i + 1st prefix S[1..i + 1] is
about to be inserted. Let P be a pointer that points to the just-inserted node
for S[1..i]. If the upcoming symbol si+1 alphabetically precedes or succeeds any
symbol seen so far, then the node for S[1..i+1] should be inserted into the right
of the list head (H) or the left of the list tail (T), respectively. Otherwise, if
the symbol si+1 is not included in S[1..i], then the list has a unique position Q
where the corresponding node Q↑ satisfies

S[Q↑.indx] ≺ si+1 ≺ S[Q↑.succ↑.indx]. (3)

Here, ‘≺’ denotes the alphabetic order on Σ. We should insert a new node
between the two nodes pointed to by Q and Q↑.succ.

If the same symbol as si+1 has already appeared in S[1..i], the inequalities in
(3) may hold with equality. In this case, in the re-lexically sorted list of prefixes
of S[1..i + 1], the immediate predecessor or successor of S[1..i + 1] has the same
last symbol as si+1. If the immediate predecessor S[1..j + 1] of S[1..i + 1] has
the same last symbol sj+1 as si+1 (0 ≤ j < i), then S[1..j] re-lexically precedes
S[1..i]. The node corresponding to S[1..j] should be the first node with the same
following symbol sj+1 as si+1 when traversing the list from the current node to
the head. We can see whether the following symbol matches si+1 by traversing
the next pointer. Conversely, if the last symbol sj+1 of the immediate successor
S[1..j+1] of S[1..i+1] is equal to si+1, then the node for S[1..j] should be the first
node satisfying sj+1 = si+1 when traversing the list from the current node to the

154 Hidetoshi Yokoo

...
· · · C x7

· · · C x5

· · · C x3

· · · C x1

S[1..i] si+1

· · · C x2

· · · C x4

· · · C x6

· · · C x8
...︸ ︷︷ ︸

re-lexically sorted contexts

Fig. 5. Re-lexically sorted contexts and their following symbols.

tail. Thus, starting from the current node for S[1..i], we search bidirectionally
the list for the node for S[1..j] while comparing the following symbols with si+1.
Once we have found the node for S[1..j], we can immediately reach the node for
S[1..j +1] via the next pointer. Then, the position where we should insert a new
node representing S[1..i + 1] is adjacent to that node for S[1..j + 1].

Now, we show that a prefix list can be constructed in linear time if the string
in question is drawn from a Markov source of finite order. In such a string,
the kth symbol can be completely characterized by the conditional probabilities
{Pr(sk|S[k −m..k − 1]) | sk ∈ Σ, S[k −m..k − 1] ∈ Σm}, where Pr(sk | S[k −
m..k− 1]) is the conditional probability of sk given S[k−m..k− 1]. We say that
the kth symbol sk occurs in the context S[k −m..k − 1].

Suppose that, for sufficiently large i, we are about to insert the node corre-
sponding to S[1..i+1]. To do it, we search the list bidirectionally for the match
of si+1. We assume that the search is performed in both directions alternately.
Figure 5 shows that the symbol-comparisons with si+1 are done in x1, x2, x3, . . .
order. We evaluate the number of symbol-comparisons in this search. Let Ks

be the total number of symbols compared until we reach the match si+1 = s,
and C denote the longest common context of those symbols. Then, the expected
number of Ks is estimated as

E{Ks} =
1

Pr(si+1 =s | C)
. (4)

Conversely, for any context C, the expected number of tested symbols over all
possible upcoming symbols becomes

E{K} =
∑

Pr(si+1 =s | C) · E{Ks}
= |{s ∈ Σ | Pr(s | C) > 0}|
4
= σC ≤ σ. (5)

A Dynamic Data Structure for Reverse Lexicographically Sorted Prefixes 155

Table 1. Number of symbol-comparisons required to insert each prefix.

number of number of symbol-
FILE size distinct comparisons

(bytes) symbols maximum average

rand 500000 53 827 52.48

paper1 53161 95 36481 42.24
bib 111261 81 47442 29.69
alice29.txt 152089 74 34520 24.53
news 377109 98 200587 78.28
plrabn12.txt 481861 81 164435 23.11
book2 610856 96 459095 70.11
book1 768771 82 419926 33.10

obj2 246814 256 119013 124.55
pic 513216 159 287924 46.95
kennedy.xls 1029744 256 671660 124.36

Here,
σ
4
= |{a ∈ Σ | P(a) > 0}| (6)

denotes the number of symbols with non-zero probability. Therefore, the ex-
pected time complexity of the construction of a prefix list is linear in the string
length with the coefficient of ∑

Pr(C)σC ≤ σ. (7)

Note that the equality in (5) holds when a data string is drawn from a memoryless
source.

The above estimation is valid for Markovian data of finite order. In order to
validate it on actual data, we performed simple measurement on the number of
symbol-comparisons on artificial and natural data. In actual situations, σ, the
number of symbols with non-zero probability, can be regarded as the number
of distinct symbols occurred in the string. Thus, we make comparisons between
the number of distinct symbols actually occurred and the number of symbol-
comparisons required in the insertion of the prefixes. Table 1 shows some results
of the measurement.

The first file, “rand,” consists of lower- and upper-case letters and spaces,
totally 53 distinct symbols. We assigned random but fixed probabilities to these
symbols, and generated a sample sequence of 500000 symbols. Thus, the file
can be thought of as a realization of a memoryless source. The other files come
from the Calgary [2] and Canterbury [1] corpora, both of which are collected
as standard data for the evaluation of text compression algorithms. The “size”
column in Table 1 includes the length of each file. The number of distinct sym-
bols in each file, which corresponds to σ, is shown in the third column. The
fourth column represents the maximum number of symbol-comparisons required

156 Hidetoshi Yokoo

in searching the list for each symbol when we insert prefixes into the list. The
last column is the average number of symbol-comparisons. Obviously, it never
exceeds the corresponding number of distinct symbols in any file. On the file
“rand,” both numbers are almost the same, which is naturally expected on data
from a memoryless source.

3 On-Line Computation of the Shortest Unique
Substrings with an Application to Entropy Estimation

Figure 6 shows an extension of our data structure, where we add an auxiliary
quantity to each node which represents the length of the longest common suffix
of the strings corresponding to the node and to its immediate successor. This
quantity serves as a measure for context similarity between two contexts which
are adjacent to each other in a re-lexically sorted list of contexts. In this section,
we describe on-line computation of the quantities and its application to the
estimation of the entropy of a data source.

Let S[1..j] denote the immediate successor of the ith prefix S[1..i]. Letting li
be the maximum l such that S[1..i+1− l] = S[1..j +1− l], we add it to the node
corresponding to S[1..i]. Assume that the node has both immediate successor
S[1..j] and immediate predecessor S[1..k] just after inserting that node (1≤j<i,
1≤ k < i). This implies that, immediately before the insertion of the node, the
two nodes S[1..k] and S[1..j] are directly adjacent to each other. Suppose that
these two nodes have had lk and lj , respectively, as shown in Fig. 7. The state
in Fig. 7 may be changed into a new one by the insertion of the node for S[1..i].
As shown in Fig. 8, the value of lj remains unchanged while the value of lk may
increase to l′k. These satisfy both li ≥ lk and l′k ≥ lk. More specifically,

If l′k > lk then li = lk otherwise li ≥ lk;
If li > lk then l′k = lk otherwise l′k ≥ lk.

...
...

...
... c y

e c y r b a = a
c y a = a e r b = b
a = a b = b c e r = r y

0© 1© 0© 2© 0© 0© 0© 3© 0© 0©
0 ⇀↽ 7 ⇀↽ 2 ⇀↽ 8 ⇀↽ 3 ⇀↽ 6 ⇀↽ 5 ⇀↽ 9 ⇀↽ 4 ⇀↽ 1

Fig. 6. Context similarities with the immediate successors (lengths of the com-
mon suffixes).

lk© lj©
⇀↽ k ⇀↽ j ⇀↽

Fig. 7. A pair of adjacent nodes.

l′k© li© lj©
⇀↽ k ⇀↽ i ⇀↽ j ⇀↽

Fig. 8. After inserting the ith prefix.

A Dynamic Data Structure for Reverse Lexicographically Sorted Prefixes 157

1.68

1.7

1.72

1.74

1.76

1.78

1.8

1.82

1.84

1.86

1.88

500000 1000000 1500000 2000000

[b
its

/b
yt

e]

[byte]

Fig. 9. On-line entropy estimation. The text is four Jane Austen’s novels, con-
sisting of 2,364,200 letters. The final result, 1.694 [bits/byte], estimated from the
entire text, is 0.055 bits better than the estimate of Kontoyiannis et al.

We can use the above relations to minimize the number of actual comparisons
required to compute l′k and li.

Our first application of the prefix list is the estimation of entropy of actual
data. As is well known in information theory, the data compression limit of a
string is given by the entropy of its source. Of the methods for estimating entropy
from sample data, the ones most related to our method are the SWE (Sliding-
window Entropy) estimator and Grassberger’s estimator [13]. Our estimate [15]
from a string S[1..n] is defined by

Ĥn = n logn
(n∑

i=1

Li

)−1

, (8)

where Li is the minimum l such that a copy of the substring S[i−l+1..i] does
not appear anywhere else in the string. Thus, Li represents the length of the
shortest unique substring ending at position i. For the immediate predecessor
S[1..k] of S[1..i], the value of Li can be calculated as

Li = max{li, lk}+ 1.

Combining Li with the equation (8), we can perform entropy estimation in an
on-line manner.

Figure 9 shows an example of entropy estimation, where the estimate Ĥn is
plotted as a function of the input length n. The sample text is a concatenation
of four Jane Austen’s novels [7], which is the same as that used by Kontoyiannis

158 Hidetoshi Yokoo

et al. Compared with their results, we know that our method is not only efficient
but also provides very good estimates. However, since the problem of estimating
the entropy of English text itself is not the main focus of this paper, we will
discuss our estimates elsewhere.

4 Implementing the Context-Sorting Text Compression
Algorithm

The context-sorting text compression algorithm [14] is an on-line data compres-
sion method, which can be regarded as a kind of symbol-ranking compressors [5].
It is important in that it connects the block-sorting compression method men-
tioned in the next section with Lempel–Ziv-type dictionary-based methods [14],
[9]. Although the context-sorting compression algorithm is asymptotically op-
timal for data from a finite-order Markov source, its existing implementation
is naive and quite slow. In our previous implementation [14], we maintained re-
lexically sorted contexts using a binary search tree. We had to limit the length of
context and to consume time proportional to that bounded length. These have
prevented us from introducing more sophisticated codes into the coding stage.

In the context-sorting method, we enumerate previous contexts in the order
of their similarities to the current context. Then, we give ranks to distinct sym-
bols in accordance with the orders of their contexts. The next symbol is encoded
as its actual rank. Figure 10 shows an example of giving ranks to symbol candi-
dates. In the figure, we assume that we have already encoded an initial segment
ending with ‘· · · to define’ and are going to encode its following symbol. In
this example, if the next symbol is ‘m’ then it is encoded as rank 0. The space ‘ ’
is encoded as rank 1, ‘d’ as rank 2, and so on. These ranks may be encoded by
a fixed static code or an adaptive code. However, since the original implementa-
tion took much time in the ranking phase, it was difficult to use adaptive codes,
which are generally slower than static ones. In our new implementation, we can
combine an adaptive arithmetic code [2] with the prefix list. We no longer need

re-lexically sorted contexts︷ ︸︸ ︷
· · · new me t hod

· · · is ine d ible

· · ·combine d

to define ?

· · · refine m ent

· · · affine

· · ·is line a r

· · ·compone n t

Candidates for the current symbol ‘?’ with their ranks:

0 1 2 3 4 5
m → → d → a → n → t → · · ·

Fig. 10. Ranked candidates in the context-sorting compression algorithm.

A Dynamic Data Structure for Reverse Lexicographically Sorted Prefixes 159

to restrict the context length. The new implementation incorporating the prefix
list runs more than ten times faster than the previous one with the bounded
context length of 8 symbols.

Obviously, the context-sorting compression method stimulates the develop-
ment of prefix list. We may compare the prefix list and the context-sorting
compression method to two sides of the same coin. The essential component of
the latter method is the calculation of symbol’s rank. Therefore, when we design
an improvement of the prefix list, we should consider not only its construction
speed but also the possibility of efficient ranking of symbol candidates.

Although the context-sorting compression method is basically a symbolwise
algorithm, it can be extended to Ziv–Lempel-type phrase-based compression
methods [14]. The HYZ compression method [9] mentioned in the introductory
section includes such an extension. Another example is the ACB algorithm of
Buyanovsky [11], whose primal version is essentially the same as LZ77 [16]. What
most distinguishes ACB from other LZ77 variants is its method of specifying the
position of the longest match. If the longest match in the previous text begins
with xk in Fig. 5, where the current phrase begins with si+1, then the value of k
is encoded as the match position. Therefore, we can apply the prefix list to the
ACB algorithm to calculate the value of k.

5 Other Applications

String matching (Finding the longest common suffix): The (exact) string
matching problem is to find a string called the pattern in a longer string called the
text. We interpret it as a problem of finding a position to insert the pattern into
the re-lexically sorted list of prefixes of the text. If we wish to find an occurrence
of ‘cabr’ in S[1..9] given in (2), it is enough to find the reverse lexicographic
relationship:

S[1..5] = ‘yabre’ ≺ ‘cabr’ ≺ ‘yabrecabr’ = S[1..9], (9)

where ‘≺’ denotes reverse lexicographic order. In this case, we can immediately
know that the pattern in question appears as S[6..9]. If we have another pattern
‘rabr’, then a similar relation

S[1..9] = ‘yabrecabr’≺ ‘rabr’ ≺ ‘yabr’ = S[1..4] (10)

holds. This time, there is no exact matching; instead the longest common suffix
‘abr’ can be found.

Thus, the problem of finding an occurrence of pat of length m in text of
length n is conceptually the same as building a prefix list for

S[1..n + m + 1] = text&pat , (11)

where the symbol & 6∈ Σ is a special delimiter that alphabetically precedes any
symbol in Σ. Of course, there is no need for the actual insertion of prefixes

160 Hidetoshi Yokoo

ending in ‘&pat ’. Actually, we first build a prefix list for the text. In order to
expedite the matching process, we use an auxiliary array of pointers, which map
symbols to nodes in the prefix list. The array element corresponding to a symbol
s includes a pointer Q that points to the node such that

S[Q↑.pred ↑.indx] ≺ s = S[Q↑.indx]. (12)

Namely, the pointer Q points to the leftmost node among nodes representing
prefixes with the same last symbol s. This array of pointers can also be used in
the course of constructing a prefix list in order to check whether the next symbol
has appeared in the initial segment seen so far. If the array element corresponding
to the first symbol of the pattern is a nil pointer, then we know that the pattern
is not contained in the text. Otherwise, we proceed to a procedure similar to the
insertion of the rest of the pattern. If the pattern is generated from the same
Markov source as for the text, this procedure runs linearly in the pattern length.
Suffix array construction: The suffix array for a string S[1..n] is an array
of the indexes from 1 to n, specifying the lexicographic orders of the suffixes of
S[1..n] [8], [6].

A prefix list maintains all prefixes in reverse lexicographic order. Thus, the
construction of a suffix array is straightforward if we apply our prefix list con-
struction procedure to a reversed string. It is sufficient to sequentially copy the
indexes of a prefix list into a suffix array by traversing the list via succ links.
Obviously, the conversion of a prefix list to a suffix array can be done in linear
time.

In some applications of suffix arrays, information about the longest common
prefixes (lcps) plays an important role [8]. The quantity li of the ith node can
be used as the lcp of consecutive elements of a resulting suffix array.
Block-sorting data compression: The block-sorting data compression algo-
rithm of Burrows and Wheeler [3] has received considerable attention in an-
ticipation that it may outperform the Lempel–Ziv codes. Its operation begins
with a special sort procedure, called the BW transform, which is followed by a
sequential application of move-to-front heuristics and statistical encoding.

We can apply the prefix list to performing the BW transform. In our terms,
the BW transform can be described in the following. Here, H and T denote the
pointers to the list head and the list tail, respectively.

P ← H ;
while (P 6= T) {

if (P ↑.next = nil) output(‘&’) else output(S[P ↑.next↑.indx]);
P ← P ↑.succ;

}
This is not identical with the original definition of the transform but is essentially
the same. The prefix list in Fig. 4 converts our sample string into

S′[1..10] = ybbrrac&ea, (13)

which in turn is encoded by a move-to-front coder. We are omitting the second
half of the algorithm; see [3] for more details.

A Dynamic Data Structure for Reverse Lexicographically Sorted Prefixes 161

The BW transform is reversible; we can reconstruct S[1..n] from its trans-
formed string S′[1..n+1]. In order to explain the reverse transformation, we add
subscripts to indicate the position of each symbol in S′[1..n+1]. In the above ex-
ample, the input into the reverse transformation is S′[1..10] = ‘y1b2b3r4r5a6c7&8

e9a10’. First, we sort alphabetically the symbols in this string in a stable manner.
Then, we have

S′′[1..10] = &8a6a10b2b3c7e9r4r5y1. (14)

Second, we write
π(i) = j, 1 ≤ i, j ≤ n + 1 (15)

for the symbol S′[i] if it appears as the jth symbol S′′[j] in S′′[1..n + 1]. In
the present example, we have π(8) = 1, π(6) = 2, π(10) = 3, and so on. Then,
beginning with S ← ε and i ← 1, we repeat

S ← S · S′[i];
i ← π(i)

(
or equivalently,

i ← π(i);
S ← S · S′′[i]

)

n times to recover the original string in S.
The (forward) BW transform is more demanding than the corresponding

inverse transform. Our prefix list performs the forward transform in linear time
at least on a string that is drawn from a finite-order Markov source.

6 Conclusion

We have presented a conceptually simple data structure, called the prefix list. It
is a linked-list representation of prefixes of a string sorted in reverse lexicographic
order. It is quite similar to the suffix array in that lexicographic linear order is
incorporated. While the suffix array has an off-line nature, a prefix list can be
built in an on-line manner. This yields its characteristic applications. The prefix
list provides a powerful tool to a class of context-based symbol-ranking data
compression algorithms. We have also shown that the prefix list is applicable to
other interesting problems.

Acknowledgments

I am grateful to Taro Yamagishi who implemented the proposed data structure
and provided experimental results. Detailed comments by an anonymous referee
should be acknowledged although they are not yet reflected on the paper.

References

1. Arnold, R. and Bell, T.: A corpus for the evaluation of lossless compression algo-
rithms. DCC’97, Proc. Data Compression Conf., Snowbird, Utah (1997) 201–210

2. Bell, T. C., Cleary, J. G., and Witten, I. H.: Text Compression. Prentice Hall,
Englewood Cliffs (1990)

162 Hidetoshi Yokoo

3. Burrows, M. and Wheeler, D. J.: A block-sorting lossless data compression algo-
rithm. SRC Research Report, 124 (1994)

4. Chen, M. T. and Seiferas, J.: Efficient and elegant subword-tree construction. In
Apostolico, A. and Galil, Z. (eds.): Combinatorial Algorithms on Words, NATO
ASI Series, Springer, Berlin (1984)

5. Fenwick, P. M.: Symbol ranking text compression with Shannon recodings. J. Uni-
versal Computer Science 3 (1997) 70–85. http://www.iicm.edu/jucs 3 2

6. Gonnet, G. H., Baeza-Yates, R. A., and Snider, T.: New indices for text: Pat
trees and pat arrays. In Frakes, W. B. and Baeza-Yates, R. A. (eds.): Information
Retrieval: Data Structures and Algorithms, Chap. 5. Prentice Hall, Englewood
Cliffs (1992) 66–82

7. Kontoyiannis, I., Algoet, P. H., Suhov, Yu. M., and Wyner, A. J.: Nonparametric
entropy estimation for stationary processes and random fields, with applications
to English text. IEEE Trans. Inform. Theory 44 (1998) 1319–1327

8. Manber, U. and Myers, G.: Suffix arrays: A new method for on-line string searches.
Proc. 1st Annual ACM–SIAM Symposium on Discrete Algorithms (1990) 319–327.
Appeared also in SIAM J. Comput. 22 (1993) 935–948

9. Matias, Y., Muthukrishnan, S., Sahinalp, S. C., and Ziv, J.: Augmenting suffix trees
with applications. Proc. ESA’98, European Symposium on Algorithms, Venice,
Italy (1998)

10. McCreight, E. M.: A space-economical suffix tree construction algorithm. J. ACM
23 (1976) 262–272

11. Salomon, D.: Data Compression: The Complete Reference. Springer, New York
(1998)

12. Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14 (1995) 249–260
13. Wyner, A. D., Ziv, J., and Wyner, A. J.: On the role of pattern matching in

information theory. IEEE Trans. Inform. Theory 44 (1998) 2045–2056
14. Yokoo, H.: Data compression using a sort-based context similarity measure. Com-

puter Journal 40 (1997) 94–102
15. Yokoo, H.: Context tables: A tool for describing text compression algorithms.

DCC’98, Proc. Data Compression Conf., Snowbird, Utah (1998) 299–308
16. Ziv, J. and Lempel, A.: A universal algorithm for sequential data compression.

IEEE Trans. Inform. Theory IT-23 (1977) 337–343

A New Indexing Method

for Approximate String Matching?

Gonzalo Navarro and Ricardo Baeza-Yates

Dept. of Computer Science, University of Chile
Blanco Encalada 2120 - Santiago - Chile
{gnavarro,rbaeza}@dcc.uchile.cl

Abstract. We present a new indexing method for the approximate
string matching problem. The method is based on a suffix tree combined
with a partitioning of the pattern. We analyze the resulting algorithm
and show that the retrieval time is O(nλ), for 0 < λ < 1, whenever
α < 1− tolerated and σ is the alphabet
size. We dex outperforms by far all other
algorith ching, also being the first exper-
iments t g schemes. We finally show how
this ind ch less space.

1 Introdu

Approximate problem in many branches of com-
puter science, hing, computational biology, pattern
recognition, si

The proble gth n, and a (comparatively short)
pattern of leng ments (or “occurrences”) whose edit
distance to the t distance between two strings is de-
fined as the m sertions, deletions and replacements
needed to mak “error level” as α = k/m.

In the on- he pattern can be preprocessed but
the text canno
time [27, 28].
35, 32, 12, 30,
reached in [12

If the text
preprocessing
ing text for ap
problems in th
schemes for th

There are
ing, which we
? This work ha

96-1064.

M. Crochemore, M
c© Springer-Verla
e/
√

σ, where α is the error level
experimentally show that this in

ms for indexed approximate sear
hat compare the different existin
ex can be implemented using mu

ction

string matching is a recurrent
with applications to text searc
gnal processing, etc.
m is: given a long text of len
th m, retrieve all the text seg
pattern is at most k. The edi

inimum number of character in
e them equal. We define the

line version of the problem, t

t. The classical solution uses dynamic programming and is O(mn)
A number of algorithms improved later this result [34, 20, 16, 11,
36, 9, 8, 24]. The lower bound of the on-line problem (proved and
]) is O(n(k + logσ m)/m), which is of course Ω(n) for constant m.
is large even the fastest on-line algorithms are not practical, and
the text becomes necessary. However, just a few years ago, index-
proximate string matching was considered one of the main open
is area [35, 3]. Despite some progress in the last years, the indexing
is problem are still rather immature.
two types of indexing mechanisms for approximate string match-
call “word-retrieving” and “sequence-retrieving”. Word retrieving

s been supported in part by Fondecyt grant 1-990627 and Fondef grant

. Paterson (Eds.): CPM’99, LNCS 1645, pp. 163–185, 1999.
g Berlin Heidelberg 1999

164 Gonzalo Navarro and Ricardo Baeza-Yates

indices [22, 6, 2] are more oriented to natural language text and information
retrieval. They can retrieve every word whose edit distance to the pattern is at
most k. Hence, they are not able to recover from an error involving a separator,
such as recovering the word "flowers" from the misspelled text "flo wers"
or from "manyflowers", if we allow one error1. These indices are more mature,
but their restriction can be unacceptable in some applications, especially where
there are no words (as in DNA) or in agglutinating languages such as Finnish
or German.

Our focus in this paper is sequence retrieving indices. Among these, we find
two types of approaches.

A first type is based on simulating a sequential algorithm, but running it on
the suffix tree [19, 1] or DAWG [14, 10] of the text instead of the text itself.
Since every different substring in the text is represented by a single node in the
tree or the DAWG, it is possible to avoid redoing the same work when the text
has repetitions. Those indices take O(n) space and construction time, but their
construction is not optimized for secondary memory and is very inefficient in
this case (see, however, [15]). Moreover, the structure is very inefficient in space
requirements, since it takes 12 to 70 times the text size.

In [18, 33, 13], different algorithms that traverse the least possible nodes in
the suffix tree (or in the DAWG) are presented. The idea is to traverse all the
different tree nodes that represent “viable prefixes”, which are text substrings
that can be prefixes of an approximate occurrence of the pattern.

In [17], a simplified version of the above technique was independently pro-
posed, consisting of a limited depth-first search (DFS) on the suffix tree. Since
every substring of the text (i.e. every potential occurrence) can be found from
the root of the suffix tree, it is sufficient to explore every path starting at the
root, descending by every branch up to where it can be seen that that branch
does not represent the beginning of an occurrence of the pattern. This algorithm
inspects more nodes than the previous ones, but it is simpler. For instance, with
an additional O(log n) time factor, the algorithm runs on suffix arrays, which
take 4 times the text size instead of 12. This algorithm was analyzed in [4].

The second type of sequence-retrieving indices is based on adapting an on-line
filtering algorithm. The filters are based in matching substrings of the patterns
without errors, and checking for potential occurrences around those matches.
The index is used to quickly find those substrings, and is based on storing some
text q-grams (substrings of length q) and their positions in the text.

Different filtration indices [23, 31, 29, 7] differ mostly in how the text is
sampled (distance between consecutive text samples, whether they overlap or
not, etc.), in how the pattern is sampled, in how many matching samples are
needed to verify their neighborhood in the text, etc. Depending on this and on
q they achieve different space-time tradeoffs. In general, filtration indices are
much smaller than suffix trees (1 to 10 times the text size), although they are
less tolerant to the error level α. They can also be built in linear time.

1 Although some, like Glimpse [22], can match the pattern inside a text word.

A New Indexing Method for Approximate String Matching 165

Somewhat special is [23], because it does not reduce the search to exact but to
approximate search of pattern pieces. To search for a pattern of length m ≤ q−k,
all the maximal strings with edit distance ≤ k to the pattern are generated and
searched in the set of q-grams. Later, all the occurrences are merged. Longer
patterns are split in as many pieces as necessary to make them short enough.

In this paper we present a hybrid indexing scheme for this problem. It uses
a suffix tree, where the pattern is partitioned in subpatterns which are searched
with less errors in suffix tree. All the occurrences of the subpatterns are later ver-
ified for a complete match. The goal is to balance between the cost to search in
the suffix tree (which grows with the size of the subpatterns) and the cost to ver-
ify the potential occurrences (which grows when shorter patterns are searched).
This method shows experimentally to be by far superior to all other implemented
proposals, and we show analytically that the average retrieval time can be made
O(n2(α+Hσ(α))/(1+α)), where Hσ(α) is the base-σ entropy function. This is sub-
linear for α < 1−e/

√
σ. This limit on α cannot probably be improved [8, 25]. We

finally propose an alternative data structure to reduce the space requirements
of the suffix tree, with little time penalty.

2 Combining Suffix Trees and Pattern Partitioning

We present now our alternative proposal. The general idea is to partition the
pattern in pieces, search each piece in the suffix tree in the classical way, and
check all the positions found for a complete match. We first consider how to
search a piece in the suffix tree and later address the pattern partitioning issue.

2.1 DFS Using a Bit-Parallel Automaton

Let us consider the existing algorithms to traverse the suffix tree. While [33,
13] minimize the number of nodes traversed, [17] is simpler but inspects more
nodes. We show that [17], thanks to its simplicity, can be adapted to use a node
processing algorithm which is faster than dynamic programming, namely our
on-line algorithm of [8]2. The tradeoff is: we can explore less nodes at higher
cost per node or more nodes at less cost per node. We show later experimentally
that this last alternative is much faster when [8] is used to process the nodes.

We recall that the idea of [17] is a limited depth-first search on the suffix
tree, starting at the root and stopping when it can be seen that the current text
substring cannot start an approximate pattern occurrence. No text occurrence
can be missed because every text substring can be found starting from the root.

More specifically, we compute the edit distance between the tree path and the
pattern, and if at some node the distance is ≤ k we know that the text substring
represented by the node matches the pattern. We report all the leaves of the
suffix tree which descend from those nodes, since their text positions start with
the matching substring. On the other hand, when we can determine that the
2 Probably [24] would also fit well.

166 Gonzalo Navarro and Ricardo Baeza-Yates

edit distance cannot be as low as k, we abandon the path. This surely happens
at depth m + k + 1 but normally happens before.

We implement this traversal using our algorithm of [8] instead of dynamic
programming. This algorithm uses bit parallelism to simulate a non-deterministic
finite automaton (NFA) that recognizes the approximate pattern. We modify this
automaton to compute edit distance (removing the initial self-loop it has in [8]).

Figure 1 shows the automaton to recognize "patt" with k = 2 errors. Every
row denotes the number of errors seen. Every column represents matching a pat-
tern prefix. Horizontal arrows represent matching a character (i.e. if the pattern
and text characters match, we advance in the pattern and in the text). All the
others increment the number of errors (move to the next row): vertical arrows
insert a character in the pattern (we advance in the text but not in the pattern),
solid diagonal arrows replace a character (we advance in the text and pattern),
and dashed diagonal arrows delete a character of the pattern (they are empty
transitions, since we advance in the pattern without advancing in the text). The
automaton signals (the end of) a match whenever a rightmost state is active. If
we do not care about the number of errors of the occurrences, we can consider
final states those of the last full diagonal.

p

p

p

a

a

a

t

t

t

t

t

t

ε ε ε

εεε

ε

ε

1 error

no errors

2 errors

1

1

1 1

1

0 0

0

1 1

1

0 0

0

1

Fig. 1. An NFA for approximate string matching. Unlabeled transitions match
any character. Dotted lines enclose the states actually represented in our algo-
rithm.

Initially, the active states at row i are at the columns from 0 to i, to represent
the deletion of the first i characters of the pattern. We do not need in fact to
represent the initial lower-left triangle, since if a substring matches with initial
insertions we will find (in other branch of the suffix tree) a suffix of it which does

A New Indexing Method for Approximate String Matching 167

not need the insertions3. On the other hand, unlike [8], we need to represent the
first full diagonal, since now it will not be always active. We start the automaton
with only this first full diagonal active, and traverse the suffix tree path until
the automaton runs out of active states or the lower right state is activated.

The simulation of this automaton needs (m − k + 1)(k + 2) bits. If we call
w the number of bits in the computer word, then when the previous number
is ≤ w we can put all the states in a single computer word and work O(1) per
traversed node of the suffix tree. For longer patterns, the automaton is split in
many computer words, at a cost of O(k(m − k)/w). For moderate-size patterns
this improves over dynamic programming, which costs O(m) per suffix tree node.

This bit-parallel variation is only possible because of the simplicity of the
traversal. For instance, the idea does not work on the more complex setup of
[33, 13], since these need some adaptations of the dynamic programming algo-
rithm that are not easy to parallelize. Note that this algorithm can be seen as a
particular case of automaton searching over a trie [5].

2.2 Partitioning the Pattern

It is well known [33, 4] that the search cost using the suffix tree grows exponen-
tially with m and k, no matter which of the two techniques we use (optimum
traversal or DFS). Hence, we prefer that m and k are small numbers. We present
in this section a new technique based in partitioning the pattern, so that the
pattern is split in many sub-patterns which are searched in the suffix tree, and
their occurrences are directly verified in the text for a complete match. We show
in the experiments that this technique outperforms all the others.

This method is based on the pattern partitioning technique of [23, 8]. The
core of the idea is that, if a pattern of length m occurs with k errors and we
split the pattern in j parts, then at least one part will appear with bk/jc errors
inside the occurrence. In fact, the case j = k + 1 is the basis for the algorithm
[9] and the q-gram index [7].

The new algorithm follows. We evenly divide the pattern in j pieces (j is
unspecified by now). Then we search in the suffix tree the j pieces with bk/jc
errors using the algorithm of Section 2.1. For each match found ending at text
position i we check the text area [i−m− k..i + m + k].

The reason why this idea works better than a simple suffix tree traversal
with the complete pattern is that, since the search cost on the suffix tree is
exponential in m and k, it may be better to perform j searches of patterns of
length m/j and k/j errors. However, the larger j, the more text positions have
to be verified, and therefore the optimum is in between. In the next section we
find analytically the optimum j and the complexity of the search

One of the closest approaches to this idea is Myers’ index [23], which collects
all the text q-grams (i.e. prunes the suffix tree at depth q), and given the pattern
it generates all the strings at distance at most k from it, searches them in the

3 If, after traversing a text substring s, a 1 finally exits from the lower-left triangle,
then a suffix of s will do the same without entering into the triangle.

168 Gonzalo Navarro and Ricardo Baeza-Yates

index and merges the results. This is the same work of a suffix tree provided
that we do not enter too deep (i.e. m + k ≤ q). If m + k > q, Myers’ approach
splits the pattern and searches the subpatterns in the index, checking all the
potential occurrences. The main difference with our proposed approach is that
Myers’ index generates all the strings at a given distance and searches them,
instead of traversing the structure to see which of them exist. This makes that
approach degrade on biased texts, where most of the generated q-grams do not
exist (in the experimental section we show that it works well on DNA but quite
bad on English). Moreover, we split the pattern to optimize the search cost,
while the splitting in Myers’ index is forced by indexing constraints (i.e. q).

3 Analysis

3.1 Searching One Piece

An asymptotic analysis on the performance of a depth-first search over suffix
trees is immediate if we consider that we cannot go deeper than level m + k
since past that point the edit distance between the path and our pattern is
larger than k and we abandon the search. Therefore, we can spend at most
O(σm+k) time, which is independent on n and hence O(1). Another way to see
this is to use the analysis of [5], where the problem of searching an arbitrary
automaton over a suffix trie is considered. Their result for this case indicates
constant time (i.e. depending on the size of the automaton only) because the
automaton has no cycles.

However, we are interested in a more detailed average analysis, especially the
case where n is not so large in comparison to σm+k. We start by analyzing which
is the average number of nodes at level ` in the suffix tree of the text, for small
`. Since almost all suffixes of the text are longer than ` (i.e. all except the last
`), we have nearly n suffixes that reach that level. The total number of nodes at
level ` is the number of different suffixes once they are pruned at ` characters.
This is the same as the number of different `-grams in the text. If the text is
random, then we can use a model where n balls are thrown into σ` urns, to find
out that the average number of filled urns (i.e. suffix tree nodes at level `) is

σ`
(
1− (1− 1/σ`

)n)
= σ`

(
1− e−Θ(n/σ`)

)
= Θ

(
min

(
n, σ`

))
which shows that the average case is close to the worst case: up to level logσ n
all the possible σ` nodes exist, while for deeper levels all the n nodes exist.

We also need the probability of processing a given node at depth ` in the
suffix tree. In the Appendix we prove that the probability is very high for β =
k/` ≥ 1 − c/

√
σ (Eq. (3)), and otherwise it is O(γ(β)`), where γ(β) < 1. The

constant c can be proven to be smaller than e = 2.718..., and is empirically
known to be close to 1. The γ(x) function (Eq. (1)) is 1/(σ1−xx2x(1−x)2(1−x)),
which goes from 1/σ to 1 as x goes from 0 to 1− c/

√
σ.

A New Indexing Method for Approximate String Matching 169

Therefore, we pessimistically consider that in levels

` ≤ L(k) =
k

1− c/
√

σ
= O(k)

all the nodes in the suffix tree are visited, while nodes at level ` > L(k) are
visited with probability O(γ(k/`)`), where γ(k/`) < 1. Finally, we never work
past level m + k. We are left with three disjoint cases to analyze, illustrated in
Figure 2.

σ

����������������������

����������������������������

��������������
��������������
��������������
��������������

log n

σ

����������������������

��������������������������

������������������������������

σlog nlog n

all nodes

some nodes
m+k

L(k)

b)

c)a)

no node

Fig. 2. The upper left figure shows the visited parts of the tree. The rest shows
the three disjoint cases in which the analysis is split.

(a) L(k) ≥ logσ n, i.e. n ≤ σL(k), or “small n”
In this case, since on average we work on all the nodes up to level logσ n,
the total work is n, i.e. the amount of work is proportional to the text size.
This shows that the index simply does not work for very small texts, being
an on-line search preferable as expected.

(b) m + k < logσ n, i.e. n > σm+k or “large n”
In this case we traverse all the nodes up to level L(k), and from there on we
work at level ` with probability γ(k/`)`, until ` = m + k. Under case (b),
there are σ` nodes at level `. Hence the total number of nodes traversed is

170 Gonzalo Navarro and Ricardo Baeza-Yates

L(k)∑
`=0

σ` +
m+k∑

`=L(k)+1

γ(k/`)`σ`

where the first term is O(σL(k)). For the second term, we see that γ(x) > 1/σ,
and hence (γ(k/`)σ)` > 1. More precisely,

(γ(k/`)σ)` =
σk`2`

k2k(`− k)2(`−k)

which grows as a function of `. Since (γ(k/`)σ)` > 1, we have that even if it
were constant with `, the last term would dominate the summation. Hence,
the total cost in case (b) is

σL(k) +
σk(1 + α)2(m+k)

α2k

which is independent of n.

(c) L(k) < logσ n ≤ m + k, i.e. “intermediate n”
In this case, we work on all nodes up to L(k) and on some nodes up to m+k.
The formula for the number of visited nodes is

L(k)∑
`=0

σ` +
logσ(n)−1∑
`=L(k)+1

γ(k/`)`σ` +
m+k∑

`=logσ n

γ(k/`)`n

The first sum is O(σL(k)). For the second sum, we know already that the last
term dominates the complexity (see case (b)). Finally, for the third sum we
have that γ(k/`) decreases as ` grows, and therefore the first term dominates
the rest (which would happen even for a constant γ).
Hence, the case ` = logσ n dominates the last two sums. This term is

nγ(k/ logσ n)logσ n =
σk(logσ n)2 logσ n

k2k(logσ(n)− k)2(logσ(n)−k)
=

σk(logσ n)2k

k2k
(1 + o(1))

(this can be bounded by (σ(1 + 1/α)2)k by noticing that we are inside case
(c), but we are interested in how n affects the growth of the cost).

The search time is then sublinear for logσ n > max(L(k), m + k), or which is
the same, α < max(logσ(n)/m (1− c/

√
σ), logσ(n)/m− 1). Figure 3 illustrates.

3.2 Pattern Partitioning

When pattern partitioning is applied, we perform j searches of the same kind of
Section 2.1, this time with patterns of length m/j and k/j errors. We also need
to verify all the possible matches.

A New Indexing Method for Approximate String Matching 171

logσ n

m

√
σ/c

√
σ

c
−1

α

1

Fig. 3. Area of sublinearity for suffix tree traversal.

As shown in [8], the matching probability for a text position is O(γ(α)m),
where γ(α) is that of Eq. (1). From now on we use γ = γ(α). Using dynamic
programming, a verification costs O(m2) 4. Hence, our total search cost is

j × suffix tree traversal(m/j, k/j) + j × γm/jm2n

and we want the optimum j. First, notice that if γ = 1 (that is, α ≥ 1−c/
√

σ), the
verification cost is as high as an on-line search and therefore pattern partitioning
is useless. In this case it may be better to use plain DFS. In the analysis that
follows, we assume that γ < 1 and hence α < 1− c/

√
σ.

According to Section 3.1, we divide the analysis in three cases. Notice that
now we can adjust j to select the best case for us.

(a) σL(k/j) ≥ n, or j logσ n ≤ k/(1− c/
√

σ)
In this case the search cost is Ω(n) and the index is of no use.

(b) σ(m+k)/j < n, or j logσ n > m + k
In this case the total search cost is

j

(
σL(k/j) +

σk/j(1 + α)2(m+k)/j

α2k/j
+ γm/jm2n

)

where the first two terms decrease and the last one increases with j. Since
a + b = Θ(max(a, b)), the minimum order is achieved when increasing and
decreasing terms meet. When equating the first and third terms we obtain
that the optimum j is

j1 =
m

logσ(m2n)

(
α

1− c/
√

σ
+ logσ(1/γ)

)

and the complexity (only considering n) is O
(
nα/(α+(1−c/

√
σ) logσ(1/γ))

)
.

4 It can be done in O((m/j)2) time [23, 26], but this does not affect the result here.

172 Gonzalo Navarro and Ricardo Baeza-Yates

On the other hand, if we equate the second and third term, the best j is

j2 =
m

logσ(m2n)
(1 + 2((1 + α) logσ(1 + α) + (1− α) logσ(1− α)))

and the complexity is O
(
n1−logσ(1/γ)/(1+2((1+α) logσ(1+α)+(1−α) logσ(1−α)))

)
.

In any case, we are able to achieve a sublinear complexity of O(nλ), where

λ = max(α
α+(1−c/

√
σ) logσ(1/γ)

, 1− logσ(1/γ)
1+2((1+α) logσ(1+α)+(1−α) logσ(1−α)))

Which of the two complexities dominates yields a rather complex condition
that depends on the error level α, but in both cases λ < 1 if α < 1− c/

√
σ.

If σ is large enough (σ ≥ 24 for c = e), the complexity corresponding to
j2 always dominates. However, it is possible that j1 or j2 are outside the
bounds of case (b) (i.e. they are too small). In this case we would use the
minimum possible j = (m + k)/ logσ n, and the third term would dominate
the cost, for an overall complexity of O(n1−logσ(1/γ)/(1+α)). This complexity
is also sublinear if α < 1− c/

√
σ.

(c) σL(k/j) < n ≤ σ(m+k)/j , or k/(1− c/
√

σ) < j logσ n ≤ m + k
The search cost in this intermediate case is

j

(
σL(k/j) +

σk/j(logσ n)2k/j

(k/j)2k/j
+ γm/jm2n

)

where the first two terms decrease with j and the last one increases. Repeat-
ing the same process as before, we find that the first and third term meet
again at j = j1 with the same complexity. We could not solve exactly where
the second and third term meet. We found

j3 =
m(α + 2α logσ logσ n + logσ

1
γ − 2α logσ

m
j3

)

logσ(m2n)
≈ m(α + logσ

1
γ)

logσ(m2n)

and since the solution is approximate, the terms are not exactly equal at j3.
The second term is O

(
nα(1+2 logσ(1/γ))/(α+logσ(1/γ))

)
, slightly higher than

the third. Again, it is possible that j3 is out of the bounds of case (c) and
we have to use the same limiting value as before.

The conclusion is that, despite that the exact formulation is complex, we have
sublinear complexity for α < 1 − c/

√
σ, as well as formulas for the optimum j

to use, which is Θ(m/ logσ n) with a complicated constant.
For larger α values the pattern partitioning method gives linear complexity

and we need to resort to the traditional suffix tree traversal (j = 1). As shown
in [8, 25], it is very unlikely that this limit of 1− c/

√
σ can be improved, since

there are too many real approximate occurrences in the text.
An interesting fact that is shown in the experiments is that in many cases

the optima are out of bounds and hence the best is to put j in the limit of cases
(b) and (c), just where the search of the subpieces become full searches. This

A New Indexing Method for Approximate String Matching 173

shows that a technique that is simple and the best choice in most cases is to
select j = (m + k)/ logσ n, for a complexity of

O
(
n1− logσ(1/γ)

1+α

)
= O

(
n

2(α+Hσ(α))
1+α

)
where Hσ(α) = −α logσ α− (1− α) logσ(1− α) is the base-σ entropy function.

3.3 The Limits of the Method

Let us pay some attention to the limits of our hybrid method (Figure 4).
Since j = Θ(m/ logσ n), the best j becomes 1 (i.e. no pattern partitioning)

when n > σΘ(m) (this is because the cost of verifications dominates over suffix
tree traversal). The best j is ≥ k+1 for n < σΘ(1/α). Since in this case we search
the pieces with zero errors (i.e. bk/(k + 1)c = 0, recall Section 2.2), the search
in the suffix tree costs O(m), and later we have to verify all their occurrences.
This is basically what the q-gram index of [7] does, except it prunes the suffix
tree at depth q.

Finally, the only case where the index is not useful is when n is very small.
We can increase j to be more resistant to small texts, but the limit is j = k + 1,
and using that j the index ceases to be useful for n < σ

1
1−c/

√
σ ≤ σ1/α. We have

also to keep sublinear the cost of verifications, i.e. nγ1/α = o(1), which happens
for α < 1/ log1/γ n. This requires, in particular, that m = Ω(log n).

(hybrid index)
intermediate j

no partit.
j = 1

σ1/α σΘ(1/α) σΘ(m)

useful
nothing maximal

j = k+1

n

Fig. 4. The j values to be used according to n.

This last consideration helps also to understand how is it possible to have a
sublinear-time index based on filtering when there is a fixed matching probability
per text position (γm), and therefore the verification cost must be Ω(n). The
trick is that in fact we assume m = Ω(log n), that is, we have to search longer
patterns as the text grows. As we can tune j, we softly move to j = 1 (then
eliminating verification costs) when n becomes large with respect to m. This
“trick” is also present in the sublinearity result of Myers’ index [23], and implicit
in similar results on natural language texts [6, 25].

4 Experimental Results

We first validate some of the analytical results of the paper and later compare
our indices against the other existing proposals. We used two different texts:

174 Gonzalo Navarro and Ricardo Baeza-Yates

– DNA text (“h.influenzae”), a 1.34 Mb file. This file is called dna in our tests,
and h-dna is the first half megabyte of it. In this case σ = 4.

– English literary text (from B. Franklin), filtered to lower-case and the sep-
arators converted into a single space. This text has 1.26 Mb, and is called
fra in the experiments. h-fra is the first half megabyte of fra. Given how
the analysis uses the σ value, it is unrealistic to set it to the alphabet size,
because the text is biased. It is much better to consider that 1/σ must be
the probability that two random letters are equal. This sets σ = 12.85.

The texts are rather small, in some cases too small to appreciate the speedup
obtained with some indices. This is because we had RAM problems to build
suffix trees for larger texts. However, the experiments still serve to obtain basic
performance numbers on the different indices.

We have tested short and medium-size patterns, searching with 1, 2 and 3
errors the short ones and with 2, 4 and 6 the medium ones. The short patterns
were of length 10 for DNA and 8 for English, and the medium ones were of length
20 and 16, respectively5. We selected 1000 random patterns from each file and
use the same set for all the k values of that length, and for all the indices.

4.1 Validating the Analysis

We first show that the suffix tree traversal has sublinear complexity. We built the
suffix tree of incremental prefixes of fra and dna, from 100 Kb to 800 Kb (larger
texts start to give i/o problems that disturb the cpu measures). According to
our analysis, the m, k and σ values used correspond to intermediate text sizes
(case (b) of Section 3.1) for n = 4Kb..4Mb on dna and for n = 40Kb..8Gb
on fra. Hence, we are clearly in case (b) in all our experiments. The analysis
predicts a complexity of O((log n)2k).

Figure 5 shows the user time as n grows, from where the sublinearity is clear.
We have used least squares with the model t = a ln(n)b to find out the empirical
complexity and present it compared to the analytical complexity. The error of
the approximation is always below 5%. We see that the analysis approximates
reasonably the empirical results, despite the many simplifications done.

We consider now the optimal j value for pattern partitioning. Table 1 presents
the query time using different j values in our index, for the fra, h-fra, dna,
and h-dna texts. As it can be seen, there are big differences in time depending on
j, and the optimum is a rather small j value (always 1 on short patterns). This
matches reasonably our formulas. In fact, once properly rounded, our analysis
recommends the correct j values. As mentioned before, the relevant value is
always in the limit between cases (b) and (c).

Figure 6 shows the user time for long patterns, as n grows, using pattern
partitioning with j = 2. This time we have used least squares with the model
t = anb. The error of the approximation is always below 2%. It can be seen

5 This is because of the restrictions of Myers’ index intersected with our interest in
moderate-length patterns.

A New Indexing Method for Approximate String Matching 175

1

1.5

2

2.5

3

3.5

4

100 200 300 400 500 600 700 800
n (Kb) [k = 1]

FRA (8,1)
DNA (10,1) Text (m, k) experiment analysis

dna (10,1) 2.83 2
dna (10,2) 3.78 4
dna (10,3) 3.79 6

fra (8,1) 2.57 2
fra (8,2) 3.53 4
fra (8,3) 4.17 6

0

10

20

30

40

50

60

70

100 200 300 400 500 600 700 800
n (Kb) [k = 2]

FRA (8,2)
DNA (10,2)

0

100

200

300

400

500

600

700

100 200 300 400 500 600 700 800
n (Kb) [k = 3]

FRA (8,3)
DNA (10,3)

Fig. 5. User query time (in milliseconds) for short patterns as n grows for k = 1
to 3, using j = 1. On the top right, the empirical and analytical exponent of
log n.

that also in this case the analysis approximates reasonably the empirical results,
slightly overestimating in most cases. The combination dna (20,6) is not included
because it takes too long and already the case (20,4) was clearly linear.

4.2 Comparison Against Others

We compare our index with the other existing proposals. However, as the task
to program an index is rather heavy, we have only considered the other indices
that are already implemented. The indices included in this comparison are

Myers’: The index proposed by Myers [23]. We use the implementation of the
author, which works for some m values only (that depend on σ and n).

Cobbs’: The index proposed by Cobbs [13]. We use the implementation of the
author, not optimized for space. The code is restricted to work on an alphabet
of size 4 or less, so it is only built on DNA.

176 Gonzalo Navarro and Ricardo Baeza-Yates

Text (10, 1) (10, 2) (10, 3) (20, 2) (20, 4) (20, 6)

dna 1: 6.81 1: 134.4 1: 1044 1: 56.81 1: 1989 1: 10075
2: 2391 2: 2585 2: 2756 2: 15.80 2: 1033 2: 9525

3: 802.8 3: 1010 3: 8841
4: 5862 4: 39077

h-dna 1: 2.71 1: 44.29 1: 394.6 1: 23.72 1: 499.9 1: 2308
2: 645.0 2: 715.3 2: 860.4 2: 6.01 2: 305.2 2: 2482

3: 232.7 3: 305.9 3: 2464
4: 1520 4: 10339

Text (8, 1) (8, 2) (8, 3) (16, 2) (16, 4) (16, 6)

fra 1: 6.11 1: 42.82 1: 215.2 1: 35.98 1: 482.9 1: 2204
2: 180.6 2: 1754 2: 19600 2: 13.30 2: 88.22 2: 464.0

3: 90.71 3: 736.6 3: 4718

h-fra 1: 2.68 1: 14.28 1: 60.91 1: 13.39 1: 126.4 1: 542.4
2: 61.43 2: 601.1 2: 4920 2: 5.30 2: 30.70 2: 146.4

3: 32.72 3: 255.5 3: 1538

Table 1. User query time (in milliseconds) for different (m, k) values (heading
rows). Inside each cell we show the cost for different j values. The optimum is
in boldface.

Samples(q): Our index based on q-grams presented in [7]. We show the results
for q = 4 to 6.

Dfs(a/p): Our new index based on suffix trees. We show the results for the base
technique (a) and pattern partitioning (p) with optimal j.

In particular, approximate searching on other q-gram indices [31] is not yet
implemented and therefore is excluded from our tests. We know, however, that
their space requirements are low (close to a word-retrieving index), but also that
since the index simulates the on-line algorithm [30], its tolerance to errors is
quite low (see [8, 25], for example).

All the indices were set to show the matches they found, in order to put them
in a reasonably real scenario. We present the time to build the indices and the
space they take in Table 2.

The first clear result of the experiment is that the space usage of the indices
is very high. In particular, the indices based on suffix trees (Dfs and Cobbs’)
take 35 to 65 times the text size. This outrules them except for very small texts
(for instance, building Cobbs’ index on 1.34 Mb took 12 hours of real time in our
machine of 64 Mb of RAM). From the other indices, Myers’ took 7-9 times the
text size, which is much better but still too much in practice. The best option
in terms of space is the Samples index, which takes from 1.5 to 7 times the text
size, depending on q and σ. The larger q or σ, the larger the index. Samples(5),
which takes 2-5 times the text size, performs well at query time.

Compared to its size, Myers’ index was built very quickly. The Dfs index, on
the other hand, was built faster than Cobbs’. Notice that suffix trees are built

A New Indexing Method for Approximate String Matching 177

2

3

4

5

6

7

8

9

100 200 300 400 500 600 700 800
n (Kb) [k = 2]

FRA (16,2)
DNA (20,2)

Text (m, k) experiment analysis

dna (20,2) 0.547 0.608
dna (20,4) 1.009 0.935
fra (16,2) 0.470 0.485
fra (16,4) 0.624 0.752
fra (16,6) 0.753 0.922

0

50

100

150

200

250

300

350

400

450

500

100 200 300 400 500 600 700 800
n (Kb) [k = 4]

FRA (16,4)
DNA (20,4)

40

60

80

100

120

140

160

180

200

220

240

100 200 300 400 500 600 700 800
n (Kb) [k = 6]

FRA (16,6)

Fig. 6. User query time (in milliseconds) for medium patterns as n grows for
k = 2 to 6, using j = 2. On the top right, the empirical and analytical exponent
of n.

quickly when they fit in RAM (as in the half-megabyte texts), but for larger
texts the construction time is dominated by the i/o, and it increases sharply.

We consider now query time. Tables 3 and 4 present a comparison between
the different indices, using for Dfs(p) the optimum j value of Table 1 (only for
medium patterns, since for short ones Dfs(a) is always better). The system time
is included because it is dominant in many cases. We include also the time of
on-line searching for comparison purposes (we use the fastest on-line algorithm
for each case). The results clearly show a number of facts.

– The indices work well only for moderate error levels. For larger texts the ratio
indexed/on-line should improve. However, when i/o time is considered many
indices seem useless, and it is not so clear that this improves for larger texts.
This depends on the amount of main memory available, and is a consequence
of most indices not being designed to work on secondary memory. This is a
very important issue that has been rarely addressed.

178 Gonzalo Navarro and Ricardo Baeza-Yates

Index dna h-dna fra h-fra

Myers’ 5.84u+0.35s 2.08u+0.12s 5.22u+0.34s 2.01u+0.12s
10.68 Mb (7.97X) 4.50 Mb (9.00X) 9.39 Mb (7.46X) 4.18 Mb (8.35X)

Samples 5.53u+0.19s 1.95u+0.10s 15.05u+0.41s 5.90u+0.24s
(4) 2.04 Mb (1.52X) 0.77 Mb (1.53X) 3.48 Mb (2.77X) 1.48 Mb (2.98X)

Samples 7.37u+0.24s 2.62u+0.08s 20.82u+0.70s 8.70s+0.35s
(5) 2.48 Mb (1.85X) 0.94 Mb (1.87X) 5.18 Mb (4.11X) 2.32 Mb (4.65X)

Samples 10.53u+0.32s 3.88u+0.13s 32.86u+1.34s 13.19u+0.97s
(6) 2.90 Mb (2.16X) 1.11 Mb (2.23X) 7.65 Mb (6.07X) 3.54 Mb (7.07X)

Cobbs’ 108.70u+532.81s 30.50u+76.06s n/a
87.99 Mb (65.67X) 32.93 Mb (65.85X)

Dfs 30.89u+104.17s 6.48u+0.42s 28.46u+76.86s 6.43u+0.61s
52.25 Mb (38.99X) 19.55 Mb (39.10X) 44.66 Mb (35.45X) 17.66 Mb (35.32X)

Table 2. Times (in seconds) to build the indices and their space overhead. The
time is separated in the cpu part (“u”) and the i/o part (“s”). The space is
expressed in megabytes, and also the ratio index/text is shown in the format
rX, meaning that the index takes r times the text size.

– Our strategy Dfs(a) of using a simpler traversal algorithm on the suffix tree
and in return using a faster search algorithm definitively pays off, since our
implementation is 3 to 40 times faster than Cobbs’, and it is the fastest
choice for small m and k values. Independently of this fact, the suffix tree
indices improve on larger alphabets, but they are much more sensitive to the
growth of m or k. In fact, the differences between fra and dna are due to
the different values of m used. The big problem with this type of index is of
course the huge space requirements it poses.

– Myers’ index behaves better on short patterns, when less splitting is neces-
sary. It works well for DNA but it worsens on English text. We conjecture
that the non-randomness may play a role here: the index takes internally
q = logσ n to avoid searching a number of nonexistent samples that are at
distance k or less from the pattern (in our case it took q = 10 for DNA and
q = 4 for English). However, in biased texts like English, a lot of q-grams are
not present anyway, and the index pays to search all of them. For DNA the
index is a good alternative, since although it is up to 13 times slower than
Dfs(a), it takes 4 times less space. It is also better than the Samples index
when the pattern is short, but not when pattern partitioning is necessary.

– The Samples index reaches its optimum performance for q between 5 and
6, depending on the case. Unlike Myers’, this index works better on English
text than on DNA. In DNA it produces a small index (4 times smaller
than Myers’) but in general has worse search time. The index for q = 5 on
English text is half the size of Myers’ index, and it also obtains good results
for medium patterns and low error levels.

– Dfs(p), which works on the same data structure of Dfs(a), improves over it
when the patterns are not very short and the error level is not too high.
When applicable, its query time is by far the lowest among all the indices.

A New Indexing Method for Approximate String Matching 179

Index k dna h-dna fra h-fra
(m = 10) (m = 10) (m = 8) (m = 8)

1 131.0/21.35 55.01/15.24 59.74/17.31 29.99/9.00
On-line 2 152.6/20.56 62.41/15.48 114.8/20.86 52.77/11.56

3 188.7/20.36 84.20/15.33 142.2/20.56 60.30/13.76

1 0.29/1.74 0.64/2.15 7.04/8.04 6.17/7.29
Myers’ 2 0.97/2.18 1.53/2.74 23.5/21.4 20.2/18.2

3 6.29/6.79 8.17/8.10 22.4/20.8 20.9/18.5

1 1.80/6.66 1.72/5.48 0.75/2.01 0.75/1.76
Samples 2 9.33/26.7 9.10/23.4 3.30/9.54 2.69/2.68

(4) 3 30.7/93.4 25.5/73.6 13.8/30.3 13.6/26.7

1 0.91/2.81 0.93/2.38 0.75/1.91 0.77/1.74
Samples 2 9.88/27.7 9.35/23.5 4.92/10.4 3.47/7.07

(5) 3 36.4/97.2 30.9/77.3 23.9/38.9 21.5/33.5

1 0.90/2.71 0.93/2.35 0.89/2.06 0.86/1.82
Samples 2 11.3/29.4 10.9/24.6 6.81/12.5 4.81/8.99

(6) 3 57.3/119 49.0/92.5 39.3/52.8 38.9/47.7

1 0.83/1.98 1.85/3.67
Cobbs’ 2 3.85/14.9 6.04/19.1 n/a n/a

3 17.9/84.5 21.8/79.3

1 0.05/0.15 0.05/0.04 0.10/0.25 0.09/0.07
Dfs(a) 2 0.88/2.72 0.71/0.57 0.37/0.96 0.27/0.22

3 5.53/16.9 4.69/3.96 1.51/4.39 1.01/0.82

Table 3. Query time for short patterns and for 1, 2 and 3 errors. The on-line
algorithm shows time in milliseconds in the format “user/system”, in italics.
The indexed algorithms show the fraction they take of the time of the on-line
algorithm. The format is “a/b”, where a considers only user time and b considers
both. The fastest indexed times are in boldface.

5 Conclusions and Future Work

We have presented a new indexing scheme for approximate string matching. The
main idea is to split the pattern in pieces to be searched with less errors, and use
a suffix tree to find their approximate matches in the text. Later, we verify all
their matches for an occurrence of the complete pattern. The splitting technique
balances between traversing too many nodes of the suffix tree and verifying
too many text positions. We have also shown how to traverse the suffix tree
efficiently in practice. We have proved analytically that the resulting index has
sublinear retrieval time (of the form O(nλ), where 0 < λ < 1 if the error level is
moderate). Finally, we have presented the first (as far as we know) experimental
results that compare the different implemented indexing schemes, which show
that the proposed idea improves over all the previously implemented approaches.

A remaining problem is that the suffix tree data structure needs too much
space. We plan to replace it by a suffix array [21]. The suffix array contains the
leaves of the suffix tree in left-to-right order, or equivalently the pointers to all the

180 Gonzalo Navarro and Ricardo Baeza-Yates

text suffixes in lexicographical order. The space requirement is in practice 4 times
the text size, which is reasonable. Suffix tree nodes (i.e. subtrees) correspond
to suffix array intervals. Any movement in the suffix tree can be simulated in
O(log n) time in the suffix array, and therefore the final complexity is multiplied
by O(log n) and the condition for time sublinearity is not affected. Finally, we
are still free to use the j value we like (unlike q-gram indices, which are limited
by q). In particular, we can easily implement specialized pattern partitioning
approaches for biased texts as in [7], where the partitioning minimizes the total
number of text positions to verify.

Index k dna h-dna fra h-fra
(m = 20) (m = 20) (m = 16) (m = 16)

2 184.6/22.18 75.16/16.61 60.59/17.56 29.91/9.48
On-line 4 311.4/21.70 116.0/15.79 116.3/20.83 50.71/14.98

6 779.2/21.42 297.4/15.77 205.6/20.58 92.36/13.37

2 0.67/1.69 0.91/1.97 7.03/8.06 10.9/10.9
Myers 4 5.13/5.50 5.61/5.74 32.7/29.2 31.9/26.3

6 16.9/16.8 17.7/17.3 26.5/25.0 25.2/23.1

2 1.55/5.10 1.60/4.55 0.44/0.95 0.63/1.03
Samples 4 6.14/13.4 6.16/12.4 2.08/4.62 2.03/4.01

(4) 6 9.10/25.4 9.48/27.9 9.59/18.6 8.85/16.1

2 0.60/1.93 0.64/1.73 0.38/0.75 0.62/0.91
Samples 4 5.26/11.3 5.77/11.9 2.21/4.87 2.15/4.19

(5) 6 10.0/25.5 10.7/26.4 14.8/23.6 12.7/19.6

2 0.31/0.83 0.41/0.84 0.39/0.70 0.60/0.91
Samples 4 5.61/11.7 6.18/12.1 2.71/5.13 2.51/4.42

(6) 6 15.2/31.5 15.3/30.8 22.9/31.1 19.3/25.3

2 3.93/11.7 6.60/16.0
Cobbs’ 4 *** 69.5/171 n/a n/a

6 *** ***

2 0.31/1.19 0.32/0.26 0.59/1.49 0.45/0.34
Dfs(a) 4 6.39/30.8 4.31/3.79 4.15/14.4 2.49/1.93

6 14.6/64.9 7.76/7.37 10.7/42.0 5.87/5.13

2 0.09/0.23 0.08/0.07 0.22/0.43 0.18/0.13
Dfs(p) 4 3.24/6.42 2.63/2.32 0.76/1.92 0.61/0.47

6 11.3/12.6 7.76/7.37 2.26/6.05 1.59/1.38

*** One single query took more than 2 hours of elapsed time.

Table 4. Query time for medium patterns and for k = 2, 4 and 6. The on-line
algorithm shows time in milliseconds in the format “user/system”, in italics.
The indexed algorithms show the fraction they take of the time of the on-line
algorithm. The format is “a/b”, where a considers only user time and b considers
both. The fastest indexed times are in boldface.

A New Indexing Method for Approximate String Matching 181

Acknowledgements

We thank the nice comments of two referees, which helped to improve this work.
We also thank Erkki Sutinen for his code to build the suffix tree, and Gene
Myers and Archie Cobbs for sending us their implemented indices.

References

[1] A. Apostolico and Z. Galil. Combinatorial Algorithms on Words. Springer-Verlag,
New York, 1985.

[2] M. Araújo, G. Navarro, and N. Ziviani. Large text searching allowing errors. In
Proc. WSP’97, pages 2–20. Carleton University Press, 1997.

[3] R. Baeza-Yates. Text retrieval: Theory and practice. In 12th IFIP World Com-
puter Congress, volume I, pages 465–476. Elsevier Science, September 1992.

[4] R. Baeza-Yates and G. Gonnet. All-against-all sequence matching. Dept. of
Computer Science, University of Chile, 1990.

[5] R. Baeza-Yates and G. Gonnet. Fast text searching for regular expressions or
automaton searching on a trie. J. of the ACM, 43, 1996.

[6] R. Baeza-Yates and G. Navarro. Block-addressing indices for approximate text
retrieval. In Proc. ACM CIKM’97, pages 1–8, 1997.

[7] R. Baeza-Yates and G. Navarro. A practical q-gram index for text retrieval al-
lowing errors. CLEI Electronic Journal, 1(2), 1998. http://www.clei.cl.

[8] R. Baeza-Yates and G. Navarro. Faster approximate string matching. Algorith-
mica, 23(2):127–158, 1999. Preliminary version in Proc. CPM’96, LNCS 1075.

[9] R. Baeza-Yates and C. Perleberg. Fast and practical approximate pattern match-
ing. Information Processing Letters, 59:21–27, 1996.

[10] A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeucht, M. Chen, and J. Seiferas.
The samllest automaton recognizing the subwords of a text. Theoretical Computer
Science, 40:31–55, 1985.

[11] W. Chang and J. Lampe. Theoretical and empirical comparisons of approximate
string matching algorithms. In Proc. CPM’92, LNCS 644, pages 172–181, 1992.

[12] W. Chang and T. Marr. Approximate string matching and local similarity. In
Proc. CPM’94, LNCS 807, pages 259–273, 1994.

[13] A. Cobbs. Fast approximate matching using suffix trees. In Proc. CPM’95, pages
41–54, 1995. LNCS 937.

[14] M. Crochemore. Transducers and repetitions. Theoretical Computer Science,
45:63–86, 1986.

[15] M. Farach, P. Ferragina, and S. Muthukrishnan. Overcoming the memory bottle-
neck in suffix tree construction. In Proc. SODA’98, pages 174–183, 1998.

[16] Z. Galil and K. Park. An improved algorithm for approximate string matching.
SIAM J. on Computing, 19(6):989–999, 1990.

[17] G. Gonnet. A tutorial introduction to Computational Biochemistry using Darwin.
Technical report, Informatik E.T.H., Zuerich, Switzerland, 1992.

[18] P. Jokinen and E. Ukkonen. Two algorithms for approximate string matching in
static texts. In Proc. MFCS’91, volume 16, pages 240–248. Springer-Verlag, 1991.

[19] D. Knuth. The Art of Computer Programming, volume 3: Sorting and Searching.
Addison-Wesley, 1973.

[20] G. Landau and U. Vishkin. Fast parallel and serial approximate string matching.
J. of Algorithms, 10:157–169, 1989.

182 Gonzalo Navarro and Ricardo Baeza-Yates

[21] U. Manber and G. Myers. Suffix arrays: a new method for on-line string searches.
In Proc. ACM-SIAM SODA’90, pages 319–327, 1990.

[22] U. Manber and S. Wu. glimpse: A tool to search through entire file systems. In
Proc. USENIX Technical Conference, pages 23–32, Winter 1994.

[23] E. Myers. A sublinear algorithm for approximate keyword searching. Algorithmica,
12(4/5):345–374, Oct/Nov 1994.

[24] G. Myers. A fast bit-vector algorithm for approximate pattern matching based
on dynamic progamming. In Proc. CPM’98, LNCS 1448, pages 1–13, 1998.

[25] G. Navarro. Approximate Text Searching. PhD thesis, Dept. of Computer Sci-
ence, Univ. of Chile, December 1998. Technical Report TR/DCC-98-14. ftp://-
ftp.dcc.uchile.cl/pub/users/gnavarro/thesis98.ps.gz.

[26] G. Navarro and R. Baeza-Yates. Improving an algorithm for approximate pattern
matching. Technical Report TR/DCC-98-5, Dept. of Computer Science, Univ. of
Chile, 1998. Submitted.

[27] S. Needleman and C. Wunsch. A general method applicable to the search for
similarities in the amino acid sequences of two proteins. J. of Molecular Biology,
48:444–453, 1970.

[28] P. Sellers. The theory and computation of evolutionary distances: pattern recog-
nition. J. of Algorithms, 1:359–373, 1980.

[29] F. Shi. Fast approximate string matching with q-blocks sequences. In Proc.
WSP’96, pages 257–271. Carleton University Press, 1996.

[30] E. Sutinen and J. Tarhio. On using q-gram locations in approximate string match-
ing. In Proc. ESA’95, LNCS 979, pages 327–340, 1995.

[31] E. Sutinen and J. Tarhio. Filtration with q-samples in approximate string match-
ing. In Proc. CPM’96, LNCS 1075, pages 50–61, 1996.

[32] J. Tarhio and E. Ukkonen. Approximate Boyer-Moore string matching. SIAM J.
on Computing, 22(2):243–260, 1993.

[33] E. Ukkonen. Approximate string matching over suffix trees. In Proc. CPM’93,
pages 228–242, 1993.

[34] Esko Ukkonen. Finding approximate patterns in strings. J. of Algorithms, 6:132–
137, 1985.

[35] S. Wu and U. Manber. Fast text searching allowing errors. Comm. of the ACM,
35(10):83–91, October 1992.

[36] S. Wu, U. Manber, and E. Myers. A sub-quadratic algorithm for approximate
limited expression matching. Algorithmica, 15(1):50–67, 1996.

Appendix: Probability of Reaching a Suffix Tree Node

We need to determine which is the probability of the automaton being active at
a given node of depth ` in the suffix tree. Notice that the automaton is active if
and only if some state of the last row is active (recall Figure 1). This is equivalent
to some prefix of the pattern matching with k errors or less the text substring
represented by the suffix tree node under consideration.

We are therefore interested in the probability of a pattern prefix of length
m′ matching a text substring of length `. This analysis is an extension of that
of [8]. As Figure 7 illustrates, at least `− k text characters text must match the
pattern when ` ≥ m′, and at least m′ − k pattern characters must match the
text whenever m′ ≥ `. Hence, the probability of matching is upper bounded by

A New Indexing Method for Approximate String Matching 183

1
σ`−k

(
`

`− k

)(
m′

`− k

)
or

1
σm′−k

(
`

m′ − k

)(
m′

m′ − k

)

depending on whether ` ≥ m′ or m′ ≥ `, respectively (the combinatorials count
all the possible locations for the matching characters in both strings). Notice that
this imposes that m′ − k ≤ ` ≤ m′ + k. We also assume m′ ≥ k, since otherwise
the matching probability is 1. Since k ≤ m′ ≤ m, we have that ` ≤ m + k,
otherwise the matching probability is zero. Hence the matching probability is 1
for ` ≤ k and 0 for ` > m+k, and we are interested in what happens in between.

Pattern: m’=9, k=5

m’ At least 9-5=4 matches

Text substring

l

Fig. 7. Upper bound for the probability of matching. At least max(m′−k, `−k)
characters must match, since otherwise it would not be possible to convert one
string into the other.

Since we are interested in any pattern prefix matching the current text sub-
string, we add up all the possible lengths from k to m:

∑̀
m′=k

1
σ`−k

(
`

`− k

)(
m′

`− k

)
+

m∑
m′=`+1

1
σm′−k

(
`

m′ − k

)(
m′

m′ − k

)

In the analysis that follows, we call β = k/`, where α/(1 + α) ≤ β ≤ 1. We
will prove that, after some depth ` in the suffix tree, the matching probability
is O(γ(β)`), for some γ(β) < 1. We begin with the first summation. We analyze
its largest term (the last one), which is

1
σ`−k

(
`

k

)2

and by using Stirling’s approximation x! = (x/e)x
√

2πx(1 + O(1/x)) we have

1
σ`−k

(
``
√

2π`

kk(` − k)`−k
√

2πk
√

2π(`− k)

)2(
1 + O

(
1
`

))

which is (
1

σ1−ββ2β(1− β)2(1−β)

)`

`−1

(
1

2πβ(1− β)
+ O

(
1
`

))

184 Gonzalo Navarro and Ricardo Baeza-Yates

where the last step is done using Stirling’s approximation to the factorial. This
formula is of the form γ(β)` O(1/`), where we define

γ(x) =
1

σ1−xx2x(1− x)2(1−x)
(1)

The whole first summation is bounded by `−k times the last term, which gives
(`− k)γ(β)`O(1/`) = O(γ(β)`). Therefore the first summation is exponentially
decreasing with ` if and only if γ(β) < 1, i.e.

σ >

(
1

β2β(1− β)2(1−β)

) 1
1−β

=
1

β
2β

1−β (1− β)2
(2)

It is easy to show analytically that e−1 ≤ β
β

1−β ≤ 1 if 0 ≤ β ≤ 1, so it suffices
that σ > e2/(1− β)2, or equivalently

β < 1− e√
σ

(3)

is a sufficient condition for the largest (last) term to be O(γ(β)`), as well as the
whole first summation.

We address now the second summation, which is more complicated. In this
case, it is not clear which is the largest term. We can see each term as

1
σr

(
`

r

)(
k + r

k

)

where ` − k < r ≤ m − k. By considering r = x` (x ∈ [1 − β, m/` − β]) and
applying again Stirling’s approximation, we maximize the base of the resulting
exponential, which is

h(x) =
(x + β)x+β

σxx2x(1− x)1−xββ

Elementary calculus leads to solve a second-degree equation that has roots
in the interval [1−β,∞) only if σ ≤ β/(1−β)2. Since due to Eq. (3) we are only
interested in σ ≥ 1/(1 − β)2, δh(x)/δx does not have roots, and the maximum
of h(x) is at x = 1 − β. That means r = ` − k, i.e. the first term of the second
summation, which is the same largest term of the first summation.

We conclude that the probability of being active at a node of level ` is upper
bounded by

m− k

`
γ(β)`

(
1 + O

(
1
`

))
= O

(
γ(β)`

)
and therefore Eq. (3) is valid for the whole summation. When γ(β) is 1, the
probability is very high: only considering the term m′ = ` we have Ω(1/`).

Hence, the result is that the matching probability is very high for β = k/` ≥
1− e/

√
σ, and otherwise it is O(γ(β)`), where γ(β) < 1.

A New Indexing Method for Approximate String Matching 185

Although the e appeared via a bounding condition, we can see that this
bound is tight: we take logσ on both sides of the condition γ(β) < 1 and get

1− β + 2(β logσ β + (1 − β) logσ(1− β)) > 0

and by replacing x = 1− β and using ln(1− x) = −x + O(x2) we have

x ln σ + 2(x lnx− (1− x)(x + O(x2)) = x ln σ + 2x lnx− 2x + O(x2) > 0

from where divide by x to obtain

x >
e√
σ

eO(x) =
e√
σ

(1 + O(x)) =
e√
σ

(1 + O(1/
√

σ))

We conclude that the precise limit for β = 1− x is

β < 1− e√
σ

+ O(1/σ)

As we show experimentally in [8], however, the real β limit is very close to
the same formula if e is replaced by c = 1.09. The reason is that the bounding
condition (Figure 7) we use is not strong enough: for instance, we could avoid
replacements in the edit distance and the bound would be the same. In the paper
we use a limit of the form β = 1− c/

√
σ, knowing that we can prove c ≤ e but

in practice it holds c ≈ 1.

The Compression of Subsegments of Images

Described by Finite Automata

Juhani Karhumäki?1, Wojciech Plandowski??23, and Wojciech Rytter34

1 Department of Mathematics, Turku University, Finland
karhumak@cs.utu.fi

2 Turku Centre for Computer Science, DataCity 4th floor, Turku, Finland.
3 Instytut Informatyki, Uniwersytet Warszawski

Banacha 2, 02–097 Warszawa, Poland
wojtekpl@mimuw.edu.pl, rytter@mimuw.edu.pl

4 Department of Computer Science, University of Liverpool

Abstract. We investigate how the size of the compressed version of a
2-dimensional image changes when we cut off a part of it, e.g. extracting
a photo of one person from a photo of a group of people. 2-dimensional
compression is considered in terms of finite automata. Let n be the size
of the smallest acyclic automaton which describes an image T . We show
that the tight bound for the compression size of a subsegment (subim-
age) in the deterministic case is Θ(n2.5) and in the weighted case is
Θ(n). We also show how to construct efficiently the compressed rep-
resentation of subsegments given the compressed representation of the
whole image. Two applications of subsegments compression are more ef-
ficient automata-compressed pattern-matching and the first polynomial
time algorithm for the fully compressed pattern-checking problem for
weighted automata.

1 Introduction

The compression size of images is of crucial importance in multimedia systems
and in transferring large images in WWW. Deterministic and weighted finite au-
tomata are successful tools for compressing 2-dimensional images, see [3,4,5,7].
There are several software packages using this type of compression, see [9,4].
Finite automata can describe quite complicated images, for example determin-
istic automata can describe the Hilbert’s curve with a given resolution, see [11],
while weighted automata can describe even much more complicated curves, see
also [3,4,5]. The objects considered are potentially exponentially compressed,
so algorithms which apply decompression are theoretically not polynomial time
algorithms. In practice exponential compression does not usually appear, nev-
ertheless the compression ratio for two-dimensional images can be very high,
especially compared with the one dimensional case (for example for images corre-
sponding to fractals having short description). For one-dimensional words there
? Supported by Academy of Finland under grant 14047.

?? Supported partially by the grant KBN 8T11C03915.

M. Crochemore, M. Paterson (Eds.): CPM’99, LNCS 1645, pp. 186–195, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

The Compression of Subsegments of Images Described by Finite Automata 187

exist polynomial-time deterministic algorithms for compressed and fully com-
pressed pattern-matching [8,10,12], despite the fact that the uncompressed size
of objects could be exponential. However these problems become much harder
in the two-dimensional case. Our main result is a constructive proof of the fact
that compressed size of subsegments of an automata-compressed images grows
only polynomially. This contrasts with the exponential grow of compression size
of subimages for compression in terms of recursive description, see [2]. Our al-
phabet is Σ = {0, 1, 2, 3}, the elements of which correspond to four quadrants
of a square array, see Figure 1.

1 3

0 2

Fig. 1. Enumeration of the quadrants.

A word w of length k over Σ can be interpreted, in a natural way, as a
unique address of a pixel x of a 2k×2k image (array), we write address(x) = w.
The length k is called the resolution of the image. For a language L ⊆ Σ+

denote by Imagek(L) the 2k × 2k black-and-white image such that the color
of a given pixel x is black iff address(x) ∈ L. We consider also the weighted
languages, formally they correspond to functions which associates with each word
w a value weightL(w). A weighted language L over Σ and resolution k determine
the gray-tone image Imagek(L) such that the color of a given pixel x equals
weightL(address(x)). If all words in L are of the same length k then we can
omit the subscript k and write Image(L). Our description of the language is in
terms of finite (unweighted or weighted) automaton A. We define Imagek(A) =
Imagek(L(A)), where L(A) is the language accepted by A.
Representation in terms of acyclic deterministic automata is equivalent to a
representation by a 2-dimensional grammar, each production corresponds to the
way of decomposing a square into 4 smaller subsquares of a same shape. For the
automaton from Figure 2 we can define the subsquare corresponding to state s1
by (∅̂ denotes a blank subsquare of appropriate shape):

s1 →
[

s2 ∅̂
s2 s2

]

We consider a subsegment image P and the host image T described by au-
tomata of sizes m and n. Denote by Compress(P) and Compress(T) the au-
tomata describing P and T , respectively.

188 Juhani Karhumäki, Wojciech Plandowski, and Wojciech Rytter

Our main problem is the Subsegment Compression Problem:

Instance: Compress(T) representation of a 2k×2k square image, a point x
in T and an integer k′ < k. Let R be a square 2k′ × 2k′

subsegment of T whose
left-upper corner is positioned at x.

Question: What is the size of Compress(R) ? What is the complexity of
computing Compress(R).

Another problem is the pattern-checking, it consists in testing a fixed occur-
rence of a large compressed image.) It is co-NP complete for 2-dimensional com-
pressions in terms of recursive generations, see [2]. We define the depth of the
automaton as the longest path from the initial state to an accepting state. An
acyclic automaton can be transformed to an equivalent automaton in which for
each state q each path from the initial state to q has the same length. We say
that a state q belongs to level t if all paths from the initial state to q are of
length t. Here, the length of a path is the number of edges in the path. In our
considerations we may restrict to acyclic automata since we consider only finite
resolution images or more precisely finite resolution approximations of infinite
resolution images.

Example. Image({0, 1, 2}k) = Sk is the 2k×2k black-and-white square part of
Sierpinski’s triangle, see Figure 2 for the case k = 4. The corresponding smallest
acyclic deterministic automaton accepting all paths describing black pixels has
5 states.

1

6

s0 s1 s2 s3
0, 1, 2,0, 1, 2,0, 1, 2,0, 1, 2,

s4

starting state accepting stae

subsegment R to be cut off

Fig. 2. The image S4 and its smallest acyclic automaton. Edges which are not
on accepting paths are disregarded.

The Compression of Subsegments of Images Described by Finite Automata 189

2 The Subsegment Compression Problem for
Deterministic Automata

Let A = ({0, 1, 2, 3}, Q, q0, δ) be a deterministic acyclic automaton of depth n
where Q is a set of states, q0 ∈ Q is the initial state, and δ : Q ×Σ∗ → Q is a
partial transition function. The automaton A defines the language L(A) = {w :
δ(q0, w) is defined |w| = n and δ(q0, w)is accepting}. Note, that in the definition
of an automaton we do not need to specify the single accepting state. For q ∈
Q, denote by Image(q) the image which is generated by the automaton which
is obtained from A by changing its initial state to q. Clearly, Image(q0) =
Image(A).

A regular block of a 2k × 2k image T is defined as follows. T is a regular block,
and if B is a regular block then all its quadrants are also regular blocks. A square
subsegment of the shape 2t × 2t is said to be of rank t. Denote by ∅̂ a square
blank block consisting only of white pixels. We use the same notation for all
possible sizes of ∅̂, the size depends on the context. We can interpret the state
q as a name of a regular block X = Image(q), we write name(X) = q. If X is a
blank block then we write name(X) = ∅̂. We call states to be essential iff they
are on a path to an accepting state.

Lemma 1. Assume the whole image is not totally blank. The number of essen-
tial states of the smallest acyclic deterministic minimal automaton describing T
equals the cardinality of different nonblank regular blocks of T .

subsegment R

0

3

0

1,2

2,3

2

1

1

0,2

3
1,2

0

1,3

0

0,1,3

q0

q1

q2

q3

q4

q5

q6

q7

q8

Fig. 3. The subsegment R of S4 and the smallest acyclic automaton describing
R.

We illustrate the lemma with the following example. The states at depth 2
of the automaton from Figure 3 corresponds to the blocks of the subsegment R
in the way shown in Figure 4.
The crucial notion is that of a pseudo-regular block, defined as a square subseg-
ment of a rank t + 1 of the corresponding image consisting of 4 adjacent regular
blocks of rank T , the regular blocks themselves are also considered as pseudo-
regular blocks. Define by Pseudo Regt(T) the set of pseudo-regular blocks of

190 Juhani Karhumäki, Wojciech Plandowski, and Wojciech Rytter

= ==

q5 q6 q7

s3

s3

s3 s3

s3

s3

s3s3α

Fig. 4. Illustration of Lemma 1. Regular blocks of R (in bold) are parts of
pseudo-blocks of T . There are 3 nonblank regular blocks of rank 1 in segment R
from Figure 3, they correspond to the states of the corresponding automaton for
R, each of these blocks is a part of a psuedo-regular block of rank 2 of T with
the same vector α shown in the figure. We have q5 = Sub(α, s3, s3, ∅, s3), q6 =
Sub(α, s3, s3, s3, ∅), q7 = Sub(α, ∅, ∅, s3, s3).

rank t of T . For a subblock X of a block X define the position of X in Y
(posX(Y)) as the position of left-upper corner of Y inside X . For a block X
of rank t + 1 and vector α define Subt(α, X) to be the sublock Y of X such
that posX(Y) = α. Each pseudo-regular block X is identified by a composite
name (name(X1), name(X2), name(X3), name(X4)) where X1, . . . X4 are regu-
lar blocks which are quadrants of X , listed in the order corresponding to Figure
1. The compressed size of the subsegment can grow since the number of pseudo-
regular blocks could be much larger than the number of regular blocks in the
same image. For example there are 2 regular blocks of rank 1 in T in Figure 2,
but 5 different pseudo-regular blocks of rank 1 (including blank ones).

Lemma 2.
For a given rank t there is a vector αt such that each regular block of rank t in
the subimage R equals Sub(αt, (A, B, C, D)) where (A,B,C,D) is a pseudo-regular
block of T of rank t + 1.

Theorem 1. Assume the compression is in terms of deterministic automata.
The compressed representation of a square subsegment R of T can be computed
in O(|Compress(T)|2.5) time.

Proof.
The states of the automaton A′ for the subsegment are tuples (αk, (A, B, C, D))
where (A, B, C, D) are pseudo-regular blocks of T of rank k + 1, and αk is a
vector from Lemma 2. Due to Theorem 2 the number of pseudo-regular blocks
is O(n2.5), where n = |Compress(T)|.

We compute names of pseudo-regular blocks top down. However we con-
sider only these pseudo-regular blocks which contain a nonblank block of the
subsegment. If we know the names of pseudo-regular blocks of rank t + 1 then

The Compression of Subsegments of Images Described by Finite Automata 191

each pseudo-regular block of rank t consists of 4 subblocks of rank t of a single
pseudo-regular block of rank t + 1, the details will be given in the full version.

3 Tight Bounds for the Compression Size of Subimages

We need the following technical lemmas.

Lemma 3. Let k1, k2 . . . , kr > 0. Then

r∑
i=2

min(k4
i−1, k

2
i + k2

i+1 + . . . + k2
r) ≤ (k1 + . . . + kr)2.5.

Proof. We omit the technical proof (induction on r).

Lemma 4. Each pseudo-regular block of rank i is a central block of a regular
block of rank k, or a central block of two adjacent (horizontally or vertically)
regular blocks of rank k, where k ≥ i.

Theorem 2. For each subimage R of an image T described by a deterministic
automaton of size n there is a deterministic automaton describing R of size
O(n2.5).

Proof. By the construction of the proof of Theorem 1 it is enough to give an
upper bound for the number of all pseudo-regular subsquares of T .

Let psi be the number of pseudo-regular blocks of rank i for 1 ≤ i ≤ r and ki

be the number of regular blocks of rank i for 0 ≤ i ≤ r. Then due to Lemma 4
the number of pseudo-regular blocks can be bounded by the number of pairs of
regular blocks of rank at least i, hence we have

psi = O(k2
i + k2

i+1 + . . . + k2
r)

In the same time each pseudo-regular block of rank i is composed of 4 regular
blocks of rank i− 1, hence psi ≤ k4

i−1. Therefore

psi = O(min(k4
i−1, k2

i + k2
i+1 + . . . + k2

r)

The conclusion of the theorem is now a consequence of Lemma 3.

In the proof of the lower bound we need two generations of size O(n) which
composed together give an object whose compression size is Ω(n2). We use the
following fact. Assume here the alphabet consists of all integeres and we have
morphisms

h(i) = 2i 2i 2i + 1 2i + 1; g(i) = 2i 2i + 1 2i 2i + 1;
We have

h2(0) = 0011001122332233;
g2(0) = 0101232301012323.

192 Juhani Karhumäki, Wojciech Plandowski, and Wojciech Rytter

Lemma 5.
Let u = hk(0) and w = gk(0). Then all n2 pairs (u[i], w[i]) are different for
1 ≤ i ≤ n2, where n = 2k.

(B)(A)

subsegment

regular subsquares with
different small subsquares

middle point

S

3

4

2

1
U

U

U

U

 T R

middle point of T
quarter of the image

 of R
subsegment R

d

d

d

d

d

d

all other entries are blank

dotted subsquaresmall subsquare

 d

d

Fig. 5. The structure of the image T = Ik and the subsegment R (indicated
in bold).

The structure of an image whose compression size is n and compression size of its
subsegemnt is Ω(n2.5) is illustrated in Figure 5. Lemma 5 is used to generate n
different subsquares on one side of the middle line and n different subsquartes on
its other side in such a way that we have Ω(n2) diferent pairs of these subsquares.
We can ”pump” these subsquares in such a way that we receive many different
subsquares which are of size O(2

√
n) and which are blank except small shaded

subsquares. There are Ω(n2) different (shaded) small subsquares of T , each one
consiting of 4 regular subsquares touching the middle line. The distance between
consecutive small subsquares is 2d, where d = 2

√
(n). There are Ω(n2) d × d

regular subsquares U1, U2, . . . in the subsegment (touching the middle line). Each
small shaded corner subsquare of Ui is different (there are Ω(n2) of them), so
there are together Ω(n2 ·log(|Ui|)) = Ω(n2.5) different regular subsquares (dotted
subsquares in the figure). Hence the compressed size of the subsegment should
be Ω(n2.5).

Theorem 3 (lower-bound).
There is an infinite sequence of deterministic automata of square images T de-
scribed by deterministic automata such that |Compress(T)| = n and there is a
square subsegment R of T satisfying |Compress(R)| = Ω(n2.5).

The Compression of Subsegments of Images Described by Finite Automata 193

4 The Subsegment Compression Problem for Weighted
Automata

For weighted automata the compression size of the subsegment grows only lin-
early, this surprising phenomenon is due to the fact that for weighted automata
we can have many edges from the same state labelled with the same symbol,
but having possibly different weights. This enables to do operations similar to
matrix addition, such trick is not possible in the deterministic case. A weighted
finite automaton describing an image is specified by (see [9] for details): set
of states Q, the alphabet {0, 1, 2, 3}, weight of edges given by the function
Wa : Q× Q → (−∞,∞) for edges labeled by the symbol a, for a ∈ {0, 1, 2, 3},
a function I : Q → (−∞,∞) called initial distribution function and a function
F : Q → (−∞,∞) called final distribution function.
The weight of a word w = a1a2 . . . ak is interpreted to give a color W (w) for the
pixel entry(w). It is defined as W (w) = IWa1Wa2 . . .Wak

F.

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

���
���
���
���
���

���
���
���
���
���

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

������
������
������
������
������
������
������

������
������
������
������
������
������
������

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

blank

=

of the image
 (A,B,C,D)pseudo-regular block

B D

CA

+
blank

+ +

blank

blank

v2

v1

v4

v3

block(D,v4) block(C,v3)block X block(B,v2) block(A,v1)

Fig. 6. Regular block X cut off from a pseudo-regular block of T (as a matrix)
can be treated as the sum: X = block(A, v1) + block(B, v2) + block(C, v3) +
block(D, v4).

For a regular block Y of T and a vector v denote by block(Y, v) the square
which is identical to Y on the overlap of Y with the square of the same shape
shifted from the corner of Y inside Y by the vector v, all other entries are blank
(contain zeros), see Figure 6.

Theorem 4 (weighted automata).
Assume the compression is in terms of weighted automata. If |Compress(T)| = n
then for a square subsegment R of T we have |Compress(R)| = O(n). The Sub-

194 Juhani Karhumäki, Wojciech Plandowski, and Wojciech Rytter

segment Compression Problem for weighted automata for a square subsegment
R can be computed in linear time.

Proof. (sketch)
Let A be the weighted automaton defining T , we identify its states with regular
blocks. For each rank t a regular block of rank t of subsegment is located in a
pseudo-regular block of T , where vectors v1, v2, v3, v4 are as in Figure 6.

We create the automaton A′ for R. Its states are identified with block(Y, v),
where Y is a regular block of T and v is one of the vectors v1, . . . , v4 which
depend on the rank. Correctness is based on the fact that the subblock X can
be treated as a matrix and it is the sum of 4 matrices, as shown in the figure.
For each rank there are 4 different vectors, so the number of states of A′ is O(n).
The construction goes top-down similarly as in Theorem 1 using the ideas from
the proof of Theorem 4.2 in [11], where atomic dependencies are decomposed
into smaller ones. In our case atomic dependencies correspond to subblocks of
the type block(Y, v). We omit the details.

5 Two Applications of the Subsegment Compression

We sketch two simple consequences of the subegment compression. The first is
an improvement (and simplification) upon a similar result in [11] and the second
one gives the first polynomial time algorithm for compressed checking problem
for weighted automata.

Theorem 5. There is an algorithm for compressed pattern-matching for deter-
ministic automata working in time O(n2.5m) where n is the compressed repre-
sentation of T and m is the total size of an uncompressed pattern P .

Proof. In the process of construction the representation for a subsegment we
compute pseudo-regular blocks. It can be shown that P occurs in T if it occurs
in a psudo-regular block of rank t + 1, where t is the rank of P . Hence we can
construct all pseudo-regular blocks of rank t + 1 and check for them (by known
linear time algorithms for uncompressed two-dimensional matching) if P occurs
in one of them.

Theorem 6. There is a polynomial time algorithm for the fully compressed
checking problem for weighted automata.

Proof.
We use the following result due to [6].
Claim. The equivalence of two weighted automata can be checked in polynomial
time.
We can construct the compressed representation of the subsegment R of T which
is of the same shape as the patern P and starts at the same location. Then we
check equality of the images R, P in polynomial time due to the claim.

The Compression of Subsegments of Images Described by Finite Automata 195

References

1. A. Amir and G. Benson, Efficient two dimensional compressed matching, Proc. of
the 2nd IEEE Data Compression Conference 279-288 (1992).

2. P. Berman, M. Karpinski, L. Larmore, W. Plandowski, W. Rytter, The compexity
of pattern matching of highly compressed two-dimensional texts, Combinatorial
Pattern Matching 1997, in Springer Verlag

3. K. Culik and J. Karhumaki, Finite automata computing real functions, SIAM J.
Comp (1994).

4. K. Culik and J. Kari, Image compression using weighted finite automata, Computer
and Graphics 17, 305-313 (1993).

5. D. Derencourt, J. Karhumäki, M. Letteux and A. Terlutte, On continuous functions
computed by real functions, RAIRO Theor. Inform. Appl. 28, 387-404 (1994).

6. S. Eilenberg, Automata, Languages and Machines, Vol.A, Academic Press, New
York (1974).

7. K. Culik and J. Kari, Fractal image compression: theory and applications, (ed. Y.
Fisher), Springer Verlag 243-258 (1995).

8. M. Farach and M. Thorup, String matching in Lempel-Ziv compressed strings, in
STOC’95, pp. 703-712.

9. J. Kari, P. Franti, Arithmetic coding of weighted finite automata, RAIRO Theor.
Inform. Appl. 28 343-360 (1994).

10. L. Ga̧sieniec, M. Karpiński, W. Plandowski and W. Rytter, Efficient Algorithms
for Compressed Strings, in SWAT’96 (1996).

11. J.Karhumaki, W.Plandowski, W. Rytter, Pattern matching for images generated
by finite automata, FCT’97, in LNCS Springer Verlag 1997

12. M. Karpinski, W. Rytter and A. Shinohara, Pattern-matching for strings with
short description, in CPM’95 (1995).

M. Crochemore, M. Paterson (Eds.): CPM'99, LNCS 1645, pp. 196-211, 1999.
 Springer-Verlag Berlin Heidelberg 1999

Ziv Lempel Compression of Huge Natural Language
Data Tries Using Suffix Arrays

Strahil Ristov 1 Eric Laporte 2

1 Ruder Boškovic Institute
Laboratory for stohastic signals and processes research

Zagreb, Croatia
ristov@rudjer.irb.hr

2 Institut Gaspard Monge
Centre d'études et de recherches en

informatique linguistique
 Université de Marne-la-Vallée, France

laporte@bastille.univ-mlv.fr

Abstract. We present a very efficient, in terms of space and access speed, data
structure for storing huge natural language data sets. The structure is described
as LZ (Ziv Lempel) compressed linked list trie and is a step further beyond
directed acyclic word graph in automata compression. We are using the
structure to store DELAF, a huge French lexicon with syntactical, grammatical
and lexical information associated with each word. The compressed structure
can be produced in O(N) time using suffix trees for finding repetitions in trie,
but for large data sets space requirements are more prohibitive than time so
suffix arrays are used instead, with compression time complexity O(N log N)
for all but for the largest data sets.

1 Introduction

Natural language processing has been existing as a field since the origin of computer
science. However, the interest for natural language processing increased recently due
to the present extension of Internet communication, and to the fact that nearly all texts
produced today are stored on, or transmitted through a computer medium at least once
during their lifetime. In this context, the processing of large, unrestricted texts written
in various languages usually requires basic knowledge about words of these
languages. These basic data are stored into large data sets called lexicons or electronic
dictionaries, in such a form that they can be exploited by computer applications like
spelling checkers, spelling advisers, typesetters, indexers, compressors, speech
synthesizers and others. The use of large-coverage lexicons for natural language
processing has decisive advantages: Precision and accuracy: the lexicon contains all
the words that were explicitly included and only them, which is not the case with
recognizers like spell [5]. Predictability: the behavior of a lexicon-based application
can be deduced from the explicit list of words in the lexicon. In this context, the
storage and lookup of large-coverage dictionaries can be costly. Therefore, time and
space efficiency is crucial issue.

Ziv Lempel Compression of Huge Natural Language Data Tries Using Suffix Arrays 197

Trie data structure is a natural choice when it comes to storing and searching over
sets of strings or words. In the contemporary usage of the term, a trie for a set of
words is a tree in which each transition represents one symbol (or a letter in a word),
and nodes represent a word or a part of a word that is spelled by traversal from the
root to the given node. The identical prefixes of different words are therefore
represented with the same node and space is saved where identical prefixes abound in
a set of words - a situation likely to occur with natural language data. The access
speed is high, successful look up is performed in time proportional to the length of
word since it takes only as many comparisons as there are symbols in the word. The
unsuccessful search is stopped as soon as there is no letter in the trie that continues
the word at a given point, so it is even faster.

When sets of strings are huge a simple trie can grow to such proportions that its
size becomes a restrictive factor in applications. A huge data structure that can’t fit
into main memory means slower searching on disk, furthermore if the structure is
small enough to fit into cache memory the search speed is increased. Numerous
researchers did a lot of work on compacting tries, reducing the size and increasing the
search speed. As there are many possible uses of a trie, most of the compaction
methods are optimized according to specific application requirements. When data
must be handled dynamically (databases, compilers) trie has to support insertion and
deletion operations as well as a simple lookup; the best results in trie compaction,
however, are achieved with static data. Few examples of work on dynamic trie
compaction are [3], [7], [8], [15]. Static tries are used successfully in a number of
important applications (natural language processing, network routing, data mining)
and the efforts in static trie compression are both numerous and justified. Although
researchers usually try to establish as good trade-off between speed and size as
possible, in most of the work emphasis is on one of the two. Two examples of work
where the speed is of main concern are [2] where search speed is increased by
reducing the number of levels in a binary trie and [1] where trie data structures are
constructed in such manner that they accord well with computer memory architecture.
When the size of the structure is of primary concern the work is usually focused on
automata compression. With natural language data significant savings in memory
space can be obtained if the dictionary is stored in a directed acyclic word graph
(DAWG), a form of a minimal deterministic automaton, where common suffixes are
shared [4], [12], [13], [17].

Majority of European languages belong to a family of languages where (i) most of
the words belong to a set of several morphologically close words (inflectional
languages), and (ii) the differences between two such morphologically close words is
usually a suffix substitution (suffixal inflection). That accounts for good results with
automata minimization, on the average a substantial portion of a word is overlapped
with other words’ prefixes and suffixes. However, this works well only for simple
word lists used mainly in spelling checkers, for most other applications (dictionaries,
lexicons, translators) some additional data (lexical tags, index pointers) has to be
attached to the word sharply reducing the overlapping of the suffixes. The additional
data can be efficiently incorporated in the trie by more complex implementation [16]
or by using the hashing transducers. The hashing transducer of a finite set of words
was discovered and described independently in [13] and [17]. This scheme
implements a one-to-one correspondence between the set of N words and the set of
integers from 1 to N, the words being taken in alphabetical order. The user can obtain
the number from the word and the word from the number in linear time in the length

198 Strahil Ristov and Eric Laporte

of the word, independently of the size of the lexicon therefore producing a perfect
hashing. The transducer has the same states and the same transitions as the minimal
automaton, but an integer is associated to each transition. The number of a word is the
sum of the integers on the path that recognizes the word. Once the number of a word
is known, a table is looked up in order to obtain the data associated with the word.

In this paper we investigate a new method of static trie compaction that reduces the
size beyond that of minimal finite automaton and allows incorporating the additional
data in the trie itself. This involves coding the automaton so that not only common
prefixes or suffixes are shared, but also the internal patterns. The procedure is best
described as a generic Ziv Lempel compression of a linked list trie. Final compressed
structure is formally more complex and has less states than minimal finite automata
used in [4] and [13]. Particularly attractive feature is a high repetition rate of
structural units in compressed structure that enables space efficient coding of the
nodes. The idea has been informally introduced in [18] and [19]. Here we shall
describe the method in more detail and demonstrate how it performs when used for
storing DELAF, a huge lexicon of French words. We also present some compaction
results for various natural language data sets. For the sets on which previous work has
been reported in the literature our results are significantly better.

In section 2 we present our method and introduce notation we use throughout the
article. Two essentially similar algorithms for compression are described in section 3,
the first one is simpler and slower, the second one much faster but requires more
space. We also explain some heuristic for simplification of the algorithms and
propose a related problem as an open problem in theory of NP completeness. In
section 4 we describe experimental data sets, among them a huge French lexicon, and
present compression results. Conclusion is in section 5.

2 Overview of the Linked List Trie LZ Compression

A trie T is a finite automaton and is as such defined with the quintuple
T = {Q, A, q0, δ, F}, where Q is a finite set of states, A is an alphabet of input
symbols, q0 ∈ Q is the initial state, δ is a transition function from Q x A to Q and F ⊆
Q is the set of accepting or final states. When trie T is produced from a set of words
W, then W is the language recognized by T.

Natural language data usually produce very sparse tries that lend themselves to
various possibilities for space reduction with retained high access speed. Sparseness
of a tree is a strong indication for employing the linked list data structure in
representation of the nodes. When linked list is used it is convenient to associate
symbols of alphabet with the levels rather than with the transitions in the trie. In this
case levels are represented with lists of structural units where four pieces of
information (Fig. 1a) are assigned to each unit:
1. a symbol (letter) a ∈ A;
2. a binary flag f indicating whether a word ends at this point (corresponding to a

final state);
3. a binary flag c indicating whether there is a continuation of valid sequence of

symbols past the current unit to the next level below;

Ziv Lempel Compression of Huge Natural Language Data Tries Using Suffix Arrays 199

4. a pointer l to the next unit at the same level (if null, there are no more elements on
the current level); if we use addressing in number of units, the size bound for l is
the number of units in T.

A linked list trie is then represented with a sequence or a string of units. Now, the
units themselves can be regarded as symbols that make up a new alphabet U and the
implemented trie structure can be defined as a string.

DEFINITION: Linked list trie LLT is a string of symbols u from alphabet U. If we
denote by N the number of structural units in LLT then:

LLT = u0u1u2 ... uN | ui ∈ U, N = |LLT| where

ui = aificili | ai∈ A, fi ∈ {0, 1}, ci ∈ {0, 1}, 0 ≤ li ≤ N

To illustrate this, in Fig. 1b units of the trie from Fig. 1a are replaced with a new set
of symbols yielding a string representation of LLT. Of course, when each of their
parts are identical, two units are identical too and consequently represented with the
same symbol.

As on any string, some compression procedure can be attempted now on LLT.
Particularly natural approach is to use LZ paradigm of replacing repeated substrings
with pointers to their first occurrences in the string [23]. The general condition for
compression is that the size of pointer must be less than the size of the replaced
substring. We used the constant and equal size units for representation of the elements
of U and the pointers so that compression is achieved whenever repeated substring is
of size 2 or more elements. In Fig. 1c repeated substrings are replaced with
information in parenthesis about the position of the first occurrence of repeated
substring and it’s size. The first number designates the position in (compressed) string
and second the length of replaced substring. Note that the first occurrence of a
substring can include a pointer to the previous first occurrence of a shorter substring.

DEFINITION: Let lsi be the length of i-th substituted substring in LLT and K be the
number of substitutions. Then, reduction in space R = Σ (lsi – 1), for i = 1 - K. Let
LLTC denote the compressed linked list trie such as that of Fig. 1c. The size NC of
compressed structure is then Nc = |LLTC| = N - R, and the compression ratio C = 1 –
Nc/N.

All size values are given in number of structural units. For the example of Fig. 1c,
R = 9 and C = 1 - 11/20 = 45%.
The sequence in Fig. 1c is a simplified representation of a compressed trie structure;
look up for the input is not performed sequentially as it may seem suggested by the
Figs. 1b and 1c, but still by following trie links. Only now when, in reading the
structure, at the position P1 a pointer unit (P0, ls1) is encountered, reading procedure
jumps to the position P0, and after ls1 units read, jumps back to the position P1 + 1.

200 Strahil Ristov and Eric Laporte

Fig. 1. a) A trie of four words {abaabaab, abaabbab, abbabaab, abbabbab} is presented in a
graphical arrangement that points out its sequential features. Final states are indicated by thick
circles; horizontal arrows represent c flags; inflected arrows represent l pointers. Structure is
traversed by following the arrows and comparing the current input symbol with one in the trie,
if symbols don’t match and there is no l pointer from the current unit then input is rejected. The
input sequence is accepted if it leads to a final state. b) LLT represented with new set of
symbols; identical units are replaced with the same symbol. c) Compressed representation of
LLT string. The first number in parenthesis is the position of the first occurrence of
repeated/replaced substring, the second number is the substring’s length. d) Implementation of
compressed structure includes two types of pointers: signs indicate pointers that replace
whole branches and sign stands for pointer that replaces only a portion of a branch and
carries the information about its length (2 in this case). Inflected arrows below indicate the
paths the reading procedure must follow in the structure. Full lines indicate one-way directions,
dashed lines indicate directions implied by pointer.

The actual implementation of LLT compression is more complex than in
straightforward application of a LZ procedure on a string in Fig. 1c where there’s no
difference in treatment of repeated substrings. The underlying structure of LLT is that
of a tree and this divides repeated substrings of LLT into two categories depending on
whether the repeated substring represents a complete branch of a tree or just a portion
of a branch. Only for this latter case should the pointers carry the information about
the number of replaced units; when the whole branch is replaced, every possible
continuation of the current input is contained in the first occurrence of the substring
and there is no need for coming back to the original position of a pointer. Second and
third pointers of Fig. 1c replace whole branches of the trie and the first one substitutes
only a part of a branch. This LLTC sequence with two types of pointers then might
look like this: abc(1,2)daeb(6,_)b(4,_) where “_” indicates that there is no possible
need for coming back. The Fig. 1d shows how actually the structure of Fig 1a is
compressed with two different types of pointers.

Ziv Lempel Compression of Huge Natural Language Data Tries Using Suffix Arrays 201

DEFINITION: Let’s call one-way pointers pointers that replace whole branches and
two-way pointers those that replace only parts of branches. Let’s say that a substring s
= u1u2...uls of LLT is closed if no unit ui ∈ s contains a li ∈ ui pointer that points
outside s, and there is no continuation to the next level from the last unit of s. That is:

s is closed if ∀ li ∈ ui ∈ s | value (li) ≤ position (uls) and cls = 0.
Otherwise let’s call s open. One-way pointers replace closed repeated substrings, two-
way pointers replace open repeated substrings.

THEOREM: Replacing every closed repeated substring of LLT with one-way
pointers produces DAWG for a given set of words W.

Proof: DAWG for a set of words W is the minimal finite automaton recognizing all
the words in W. Minimization is obtained by merging all the equivalent states of the
automaton.

If two states are reached by sequences s1 and s2 they are equivalent if for every
sequence z holds that if s1z is in W then s2z is also, and if s1z is not in W neither is s2z.
Since substrings of LLT replaced with one-way pointers are identical it is obvious that
they carry identical partial transition function, and since they are closed there exist no
other unknown suffixes so the repeated states are indeed equivalent.

The additional compression, above that of automata minimization, is achieved with
introduction of two-way pointers capable of replacing open substrings of LLT. It is
worth noting that the formal complexity of compressed structure is then higher than
that of finite automaton. States replaced by two-way pointers are not equivalent in the
finite automata sense and some conditional branching is introduced in the procedure
of reading the structure. For example, after reading b in the second position on Fig. 1d
further direction depends on whether this is the first time read or the read directed by
the pointer at the fourth position. This type of decision is beyond the power of finite
automata.

3 Algorithms

We first present a simple quadratic algorithm for producing LLT from W and then
replacing repetitions with pointers. Denote with si ∈ LLT a substring of units starting
at the position i in LLT. Let E be a relation of substring prefix equality on LLT such
that siEsj means that there are at least two first units of si and sj that are equal. That is:
siEsj => ui...uk = uj...uk and k ≥ 2. Let R be the relation of substring substitutability
where siRsj means that sj can be replaced with the pointer to si. For the algorithmic
complexity reasons R covers smaller class of LLT substrings than E; this will be
explained a bit latter. The algorithm is then as follows:

ALGORITHM A:

sort W
build LLT(W)
for i = 1 to N – 3

202 Strahil Ristov and Eric Laporte

 for j = i+2 to N – 1
 if siEsj

 if siRsj

 check whether substitutable substrings are open or closed
 replace sj with the appropriate pointer

end

Building of LLT(W) is a straightforward procedure of building a trie that can be done
in O(N) time and will not be explained here. Initial sorting of W is the simplest way
of preventing following situations to occur: Let M be the number of words in W, wm |
m < M denote m-th word in W, and LLTm a linked list trie with m words built into it.
If w(m+1) has a prefix wk that is also a word of W such that
k < m and wm is not a prefix of w(m+1) then there is no place for the suffix of w(m+1) that
is the difference between w(m+1) and wk. This suffix should find its place right after wk,
but since there is already at least one word not prefix of w(m+1) in the structure, this
place is occupied. Situation like this would require usage of additional pointers in the
construction of the trie and it is more economical instead to arrange the input order in
a way to avoid this. The simplest way to do this is to sort W before building LLT(W),
then if words exist in W that are prefixes of other words they are all grouped together
and any existing prefix of w(m+1) is at the end of LLTm.

The central part of presented algorithm has clear quadratic time complexity.
Double loop of comparing each position in LLT with every other to check whether
they are the starting positions of equal substrings takes N2/2 iterations. (The inner loop
is only shifted to the right by two – the minimum size of substitutable substrings.) The
procedures of checking whether repeated substrings are open or closed and replacing
them with pointers are done only once for each replaced substring so they add to the
overall complexity only a linear factor proportional to R. The average input sorting
procedure is done in O(M log M) time and the total time complexity for producing
LLTC from W is then O(M log M + N + N2 + R) with O(N2) being by far the most
important bound. In practice this simple procedure is fast enough for smaller data sets
such are smaller simple word lists with high prefix repetition rate that produce smaller
tries. Unfortunately, for bigger sets of entries that do not share too many common
prefixes, and therefore produce huge tries, the exhaustive quadratic procedure is not
feasible.

3.1 Speed Up via Suffix Matching

Speed up is possible and in fact a linear time bound can be achieved using suffix tree
for finding repetitions in LLT. The idea of assisting LZ compression with suffix tree
search has firstly been presented in [21]. A suffix tree of all suffixes in LLT can be
built in O(N) time, all the repetitions in LLT are then associated with the nodes in the
suffix tree and easily found in linear time [11]. The problem with building suffix trees
is that they require to much space when alphabet is large as is the alphabet of all
different units of LLT, and for this case a better approach is to use suffix arrays [14].
A suffix array for LLT is an array of starting positions in LLT of sorted suffixes of
LLT. Sorting is on the average done in O(N log N) time and then all repeated
substrings are grouped together in suffix array.

Ziv Lempel Compression of Huge Natural Language Data Tries Using Suffix Arrays 203

Now the problem rests of finding the best candidates for replacement with pointers
among the substrings grouped together. The simplest way to do this is to delimit
groups of suffixes in suffix table that have at least two first elements identical and
then to perform quadratic search only on elements in the group. These groups should
be sorted according to the suffix starting position in LTT so that search and replace
procedure can be done in consecutive order from the beginning of the structure. This
is important because it avoids considerable expense of keeping track of all the
changes in the structure that can interfere with incoming replacements. Overall, this is
much faster way to find possible candidates for the substitution with pointers than the
exhaustive quadratic search of Algorithm A. The procedure is then:

ALGORITHM B:

1: sort W
2: build LLT(W)
3: build suffix_array(LLT(W))
4: define partitions of suffix_array(LLT(W)) that comprise two or more entries

with identical first two units
5: sort the suffixes in partitions according to their position in LLT(W)
6: from the first to the last element in partitions compare each element to every

other from the same group | check whether substitutable substrings are open
or closed | replace substitutable substrings with the appropriate pointers

Time complexity of comparing substrings at suffixes’ starting positions to possible
candidates for replacement within the groups is still quadratic but with much smaller
base. If there are G different groups of suffixes with identical beginnings in
suffix_array(LLT(W)) and SGi, i = 1 – G is the number of elements in i-th group, the
time complexity of step 6 is O(Σ SGi

2). For real data the size of any group is much
smaller than N so this improves strongly on time requirements of Algorithm A. The
price is paid in space used for suffix array and tables needed for storing and searching
groups. There is also the sorting of the groups procedure of step 5 that requires O(Σ
SGi log SGi) time so the total time complexity of Algorithm B is O(M log M + N + N
log N + Σ SGi log SGi + Σ SGi

2 + R). When running the experiments it is apparent that
steps 3 to 5 consume most of the running time of Algorithm B for values of N up to a
million. Only for tries with more units quadratic time complexity of step 6 becomes
increasingly important. However, these are the values of N where the difference in
complexity of Algorithms A and B matters the most. For the biggest tries that we
experimented with (N = 16 million) estimated run time of Algorithm A is 250 times
longer.

If some additional structures are used to mark already replaced substrings then Σ
SGi

2 factor can be improved to Σ RGi

2 where RGi is the number of substitutions
actually performed in i-th group. This has not been justified experimentally since
Algorithm B already uses considerably more space than Algorithm A and for large N
values the size of additional structures may become a restricting factor.

204 Strahil Ristov and Eric Laporte

3.2 Bounds for Compression of LLTC

LLTC produced by Algorithms A or B is not necessarily the smallest possible
structure of this sort recognizing W. There exist one obvious structural limitation for
compression – a constant size of unit, and some algorithmic limitations that are
imposed for the sake of the algorithmic simplicity.

Size of Structural Units. If the size of structural unit is kept constant, which
immensely simplifies and speeds up the look up procedure, then the bound for the size
of each unit is the size of units holding the largest numerical information. There are
two types of structural units in LLTC: the symbol units, same as those of LLT that
carry the symbol code a, f and c flags and the l pointer, and the pointer units that are
either one- or two–way pointers replacing repeated substrings in LLTC. The size limit
for symbol unit in bits is given by logA + 1 + 1 + log Nc and this limit is forced
onto pointer units too. Pointer units carry information about the address of the first
occurrence of substituted substring, about its length (if two-way) and some
information that distinguishes them from symbol units. In symbol units either f or c
flag or both must be 1 (true) because the word can only end with the current symbol
or be continued to the next one. Therefore combination of two zeros for f and c flags
is impossible in symbol units and this is used as an indication that the current unit is a
pointer. The bound for the size of the address of the first occurrence of replaced
substring is log Nc again, so this leaves log A bits in pointer units for storing the
length of replaced substring for two-way pointers. This was enough for every data set
we have experimented with so far. LLTC normally supports embedded pointers, i.e. a
pointer can point to a sequence of units that contains another pointer, and this can
have many levels. For reasons of space economy we are storing in two-way pointers
only the number of units that has to be followed on the first level which is usually
considerably smaller than the full length of the replaced substring. Apart from this
little trick there is another reason why log A bits are enough for two-way pointer
information - the longest substituted substrings are usually closed and are therefore
replaced with one-way pointers. The problem with constant size units is in that when
Nc is big, most of the l pointers are much smaller in value and a considerable amount
of space is wasted. If this becomes critical it is always possible to use variable size
coding of units or, which should be the best solution for the overall reduction of
redundancy in LLTC, to use additional table for minimal size coding of units
described latter in section 3.3.

Algorithmic Complexity Constraints on Possible Substring Substitution. There
are three algorithmic limitations to compression of LLTC arising from its underlying
tree structure and they are defined with the following rules:
Rule 1. If the repeated substrings overlap, then shorten them so that they don’t.
Rule 2. If si = ui...uk...ui+ls is a repeated substring and lk ∈ uk has value(lk) > i+ls+1 then
shorten si to siR = ui...uk-1.
Rule 3. If si = ui...uk...ui+ls is a repeated substring and there exists lh ∈ uh | h < i, such
that value(lh) = k | i+1 ≤ k ≤ i+ls, then shorten si to siR = ui...uk-1.
The above three rules account for the aforementioned difference between classes of
equal and substitutable substrings of LLT. If these rules are not observed situations

Ziv Lempel Compression of Huge Natural Language Data Tries Using Suffix Arrays 205

would be occurring that would require complicated procedures to solve while at the
same time not improving much on the compression. If overlapping of replaced
substrings is allowed it would take great pains to avoid never-ending loops and the
savings in space would be only one unit per occurrence. (If overlapping is allowed
pattern.pattern.pattern can be replaced with pattern.pointer, and if not, with
pattern.pointer.pointer with only the cost of one pointer increase in space.) Hence the
Rule 1.

Rule 2 prevents the substitution of a substring si that contains a l pointer pointing
out of si by more than one. This is necessary because it is possible that substring of
LLT between the end of si and the position the l pointer points to can latter be
replaced with another pointer unit and then the value of l won’t be correct anymore.
To account for that a complicated and time costly checking procedure should be
employed and the savings would be at most two units per occurrence. (If k = i + ls
then only unit ui+ls is not included in the substituted substring, if k = i + ls - 1 then the
loss is two units ui+ls-1ui+ls, and if k < i + ls - 1 then the part of si behind uk is a new
repeated substring and can be replaced with a new pointer so the loss is again only
two units.)

Rule 3 for the similar reasons shortens si up to the position pointed to by some l
pointer positioned before si. If si is replaced then this l value wouldn’t be correct
anymore and the necessary checking would be unjustifiably costly. Analogously to
Rule 2 the loss in compression is at most two units per occurrence.

It should be noted that situations where Rules 1, 2 and 3 come to effect occur
seldom enough in natural language data that we have been experimenting with so far.
Apparently, application of these rules worsens the compression by not more than 3%.
Input Ordering Problem. Apart from that, there exists a serious algorithmic
impediment in optimization of LLTC compression introduced by the order of input
words when building LLT. Fortunately, this has only a theoretical importance and
carries a little weight in practice. Let us consider a special case where W can be
divided into a set of distinct partitions Wi, Wi ∈ W, such that every word in Wi has the
same length Li and differs from other words in Wi only in the last letter. Let Pi denote
a sequence of units in LLT that represents a common prefix of words in Wi, then
length(Pi) = Li - 1. Let uLik denote the unit representing the last letter in word wik ∈ Wi

where k = 1 – Ki, Ki = |Wi|. Suppose that no word in W is a prefix of another word in
W, then when a linked list trie is built each subset Wi produces a LLT branch of type
PiuLi1uLi2uLi3...uLiKi. Units corresponding to the last letters in words are connected with l
pointers of value one and are identical in every aspect but for the symbol content
throughout all the subsets Wi. Ordering of the sequence of uLi units has no bearing on
the content of LLT, it is determined by the ordering of input words which can be
arbitrary since no word of W is a prefix of another word in W. Now, the problem is
how to order sequences of uLi units in such a way as to obtain the highest possible
compression achieved by replacing substitutable substrings in LLT with pointers. We
haven’t been able to find an efficient solution for this problem and we suspect it is
NP-hard. We haven’t been able to prove that neither so we propose this as an open
problem in theory of NP completeness. Reduced for the simplicity it can be stated as:

INSTANCE: Finite set of variables V and a collection T of triples (vj, vk, vl) from V.
For each triple holds a statement

vj ∠ vk and vj ∠ vl

206 Strahil Ristov and Eric Laporte

where ∠ stands for any transitive, asymmetrical and irreflexive relation such as
‘smaller than’, ‘bigger than’, ‘has lower/higher rank’ etc.

QUESTION: Is there an assignment of values to variables in V such that the number
of statements (or triples) that are satisfied is not less than a given integer I ≤ |T|?

The order of input words may therefore have influence on how well the linked list trie
is compressed. With actual natural language data this is not an important factor, the
lexicographical sort of input results in highly repetitious LLT structure and this
normally solves the problem well enough. When we investigated possible variations
between worst and best case orderings on actual data the difference in size of
compressed structures could never be above 2%.

3.3 Minimal Size Unit Coding with Table Lookup

An interesting and exploitable feature of LLTC is a high repetition rate of identical
units throughout the structure. Apparently, lexicographic sort of input records
combined with employed linked list representation produces a high level of structural
unit repetitions in both LLT and LLTC. This effect gets more pronounced with larger
data sets. For example, in a compressed trie of over 2 million elements only about
200,000 units are different. A simple and very effective coding of the units is
therefore possible for reducing redundancy in the structure. If all the different units
are stored eparately in a table of size ND × (unit size), where ND is the number of
different units, then LLTC can be represented with an array of N pointers of size log
ND bits. On top of this, up to two bits per table unit can be saved by using their
position in table instead of flags. In most cases table coding leads to important savings
in space and the time needed for table lookup only about halves the search speed, as
indicated by our experiments.

The compressed structures produced with Algorithms A or B are very compact and
fast to search. Typical access speed for LLTC is measured in tens of thousands of
found words per second. This is fast enough for any real time application, even for
those that rely on an exhaustive search in space of similar words. In the following
section we describe some actual data sets and present results of compaction
experiments.

4 Data Sets and Experimental Results

4.1 Natural Language Lexicon

A simple spell-checker needs only to recognize whether a word belongs in the
vocabulary of the language or not. In that case, the states of the automaton
recognizing a word set are classified as final or non-final. For most other applications,
correct words need to be assigned a lexical tag with a grammatical content: part of

Ziv Lempel Compression of Huge Natural Language Data Tries Using Suffix Arrays 207

speech (noun, verb...), inflectional features (plural, 3rd person...), lemma (e.g. the
infinitive for a verb). For instance, woods should be assigned a tag like wood.N:p (i.e.
the noun wood in the plural). A minimal automaton can still represent a dictionary
that assigns tags to words. Two methods are used to allow for tags in the dictionary.
In the first [17], [20], tags are associated to states; the automaton has multiple
finalities, i.e. the number of finalities is not necessarily 2 (final/non-final) but the
number of tags. In the second method [12], tags are considered as parts of dictionary
items. In both cases, minimization is still possible and time efficiency is preserved,
but the minimization is less efficient in space, since common suffixes are no longer
shared when the words have different tags (e.g. ds in the noun woods and in the verb
adds).

When the linguistic information in the tags is limited to basic grammatical
information, the number of possible different tags can remain small and these
solutions are still optimal. The limit is reached when more elaborate information is
included into the tags, namely syntactic information (number of essential
complements of verbs, prepositions used with them, distribution of subjects and
complements). When this information is provided systematically, the number of
different tags comes close to the number of words, and beyond because this level of
description requires more sense distinctions [9]. Consequently, the minimal
automaton grows nearly as large as the trie. However, the variety of labels used in
tags is more limited and there exists a substantial amount of substring repetition in
lexical entries. For this reason LLTC structure seems like a natural choice for storing
lexicons.

We used LLTC for compressing a comprehensive dictionary of French, the
DELAF [6]. This dictionary lists 600,000 inflected forms of simple words. It is used
by the INTEX system of lexical analysis of natural-language texts [22]. Linguistic
information are attached to each form: parts of speech (noun, verb...); inflectional
features (gender, tense...); lemma (e.g. the infinitive in the case of a verbal form);
syntactic information about verbs. In case of ambiguities, appropriate sense
distinctions are made. The syntactic information attached to verbal forms is derived
from the lexicon-grammar of French, a systematic inventory of formal syntactic
constraints: number of essential complements, prepositions used with them,
distribution of subjects and complements etc. [10]. The size of DELAF in text format
is 21 Mbytes and a typical example of three entries in DELAF is presented in Fig. 2.

abandon,.N:ms

abandonna,abandonner.V+t+32CL+32H+36R+38LR+38L1+6+9:IPA3s/abandonner.V+
{s'~}+i+7:IPA3s/abandonner.V+i+31H+35R:IPA3s

abandonnai,abandonner.V+t+32CL+32H+36R+38LR+38L1+6+9:IPA1s/abandonner.V
+{s'~}+i+7:IPA1s/abandonner.V+i+31H+35R:IPA1s

Fig. 2. Three entries in DELAF lexicon of French words with attached grammatical,
syntactical and lexical data.

Three things are obvious from this example: first, the amount of repeated substrings is
high; second, a simple DAWG would be of little use since the endings of entries are
highly diversified (i.e. there are not too many equivalent states in finite automaton
produced from DELAF); and third, a trie produced from entries such as those on Fig 2

208 Strahil Ristov and Eric Laporte

will be huge. The first two facts speak in favor of trying to store DELAF in LLTC,
but the third presents a problem. A huge LLT means a huge N and the quadratic part
of compression algorithm becomes important. In fact, with Algorithm B the
compression time for LLT(DELAF) was 5.5 hours on a 333 MHz PC running Linux.
In Table 1 we present all the relevant numbers for experiments with DELAF and
other data sets.

The compressed size with table unit coding is 5.5 Mbytes. This is a considerable
improvement over currently used format with tags stored separately that is over twice
that size. Reduction in size can be important in integrated applications where lexicon
is only a part of the system (computer-aided translation, natural language access to
databases, information retrieval). The five and half hour compression time is
acceptable for this instance because it is unlikely that data sets of this type will be
updated on the run. The search speed is high enough for every possible application.

4.2 Other Data Sets

In order to demonstrate the potential of our method for compressing static dictionaries
we present in Table 1 experimental results for seven additional natural language data
sets. Six are publicly available and some compression results have already been
published for two of them. Here are the brief descriptions:
- DELAF word forms: all the simple French word forms without any additional
information, extracted from DELAF
- Calgary book1 7-tuples: a list of all successive seven-tuples from book1 of Calgary
corpus; the compressed size of this set as reported in [7] is about 2.5 M
- words: a list of English words found in /usr/dict/words on Unix systems (older
release); the compressed size of this set as reported in [13] is 112 K
- linux.words: a list of English words found in /usr/dict/linux.words on Linux systems
- Moby words simple: a list of simple English words from
http://www.dcs.shef.ac.uk/research/ilash/Moby/mwords.html
- Moby words compound: a list of compound English words from
http://www.dcs.shef.ac.uk/research/ilash/Moby/mwords.html
- Moby words all: combined simple and compound word lists of above.

The compression times and search speeds were measured on 333 MHz P II PC
under Linux OS. The compression times given are for Algorithm B steps 3 to 6, i.e.
without initial sorting of input entries and building the trie. Search speed is calculated
by measuring the time needed for reading all the input words from disk and looking
them up in the compressed structure loaded in the main memory. The first, most
densely populated, level of the compressed trie is accessed through the array of
starting positions for each letter instead of searching the list. This speeds up the search
for up to 20% with the space overhead of only 512 bytes for the array (if long integers
are used as pointers to starting positions of different letters in LLTC).

In standard coding of LLTC units node sizes are rounded to a whole byte for
optimum speed and simplicity. In some cases this is a considerable waste; for
instance, Moby data largest pointer units require 26 bits, leaving 6 bits per 4 byte unit
unused. In structures with minimal coding all elements are coded with minimum
number of bits. Only a small overhead of few bytes is necessary for denoting table
and array element sizes, as well as the distribution of various pointers in the table.

Ziv Lempel Compression of Huge Natural Language Data Tries Using Suffix Arrays 209

ta
bl

e
co

de
d

15
 K

35
 K

15
 K

35
 K

35
 K

30
 K

30
 K

25
 K

se
ar

ch
 s

pe
ed

(w
or

ds
 p

er
 s

ec
on

d)

st
an

da
rd

30
 K

70
 K

45
 K

70
 K

70
 K

80
 K

80
 K

60
 K

co
m

pr
es

si
on

tim
e

(s
ec

on
ds

)

5.
5

ho
ur

s

16
4

44 7 12 90 18
9

38
0

ta
bl

e
co

de
d

m
in

im
al

L
L

T
C

 s
iz

e

5.
5

M

29
2

K

78
5

K

83
 K

95
 K

78
0

K

1.
11

 M

1.
9

M

L
L

T
C

 s
iz

e
w

it
h

ro
un

de
d

no
de

s
(n

od
e

si
ze

)

8.
4

M
 (

4)

38
5

K
 (

3)

1.
3

M
 (

4)

12
0

K
 (

3)

14
0

K
 (

3)

1.
33

 M
 (

4)

1.
85

 M
 (

4)

3
M

 (
4)

N
o.

 o
f

no
de

s
in

co
m

pr
es

se
d

tr
ie

2.
14

 M

13
0,

10
0

32
8,

50
0

41
,3

00

47
,9

50

33
8,

50
0

47
4,

30
0

78
0,

20
0

N
o.

 o
f

no
de

s
in

tr
ie

16
 M

1.
2

M

75
9,

20
0

81
,7

00

11
4,

80
0

98
6,

00
0

1.
35

 M

2.
27

 M

A
SC

II
si

ze
 (

K
)

21
,4

30

6,
94

2

6,
00

5

20
5

39
9

3,
62

6

3,
13

4

6,
75

9

N
o.

 o
f

en
tr

ie
s

60
9,

45
4

60
9,

45
4

76
8,

76
4

25
,4

86

45
,4

02

35
4,

98
4

25
6,

77
2

61
1,

75
6

T
ab

le
 1

. E
xp

er
im

en
ta

l r
es

ul
ts

 f
or

 v
ar

io
us

 n
at

ur
al

 la
ng

ua
ge

 d
at

a
se

ts

da
ta

 s
et

D
E

L
A

F

D
E

L
A

F
 w

or
d

fo
rm

s

C
al

ga
ry

 b
oo

k1
7-

tu
pl

es

w
or

ds

li
nu

x.
w

or
ds

M
ob

y
w

or
ds

si
m

pl
e

M
ob

y
w

or
ds

co
m

po
un

d

M
ob

y
w

or
ds

 a
ll

210 Strahil Ristov and Eric Laporte

5 Conclusion

Experimental results presented in Table 1 show that our method exhibits considerable
potential for storing natural language data, for inflected languages more than for non-
inflected - the French word forms set compresses considerably better than the sets of
English words. Still, it performs well for every set tested. The only data sets we could
find with previously published results (words and 7-tuples) compress better than
previously reported. One would expect that increased number of words would always
lead to a better overlapping of substrings. It is therefore somewhat surprising that
combined sets of Moby simple and compound words do not compress better than
when separated. Also, although we are satisfied with the final result, the huge number
of different tags in DELAF did not compress as well as we expected. When partitions
of DELAF (even as small as 10,000 entries) are compressed separately the
compression ratio is roughly the same as for the whole set. Obviously, with LLTC
compression, as with any compression method, the degree of success depends on the
actual data. Overall, we believe that presented method of LZ linked list trie
compression can be successfully used for storing and accessing data in various natural
language related applications.

Acknowledgements

We thank the LADL (Laboratoire d'automatique documentaire et linguistique,
University Paris 7) for providing DELAF and anonymous referees for helpful
comments.

References

1. A. Acharya, H. Zhu and K. Shen, Adaptive Algorithms for Cache-efficient Trie
Search, ACM and SIAM Workshop on Algorithm Engineering and
Experimentation ALENEX 99, Baltimore, Jan. 1999.

2. A. Andersson and S. Nilsson, Improved Behaviour of Tries by Adaptive
Branching. Information Processing Letters, Vol. 46, No. 6, 295-300, 1993.

3. J. Aoe, K. Morimoto and T. Sato, An efficient implementation of trie structures,
Software-Practice and Experience, Vol. 22, No. 9, 695-721, 1992.

4. A.W. Appel and G.J. Jacobson, The world's fastest scrabble program,
Communications of the ACM, Vol. 31, No. 5, 1988.

5. J. Bentley, A spelling checker, Communications of the ACM, Vol. 5, No. 28, 456-
462, 1985.

6. B. Courtois, Un systéme de dictionnaires électroniques pour les mots simples du
français, in Langue Française 87, Dictionnaires électroniques du français, eds.
Blandine Courtois and Max Silberztein, Larousse, Paris, 11-22, 1990.

7. J.J. Darragh, J. G. Cleary and I. H. Witten, Bonsai: A Compact Representation of
Trees, Software-Practice and Experience, Vol. 23, No. 3, 277-291, 1993.

Ziv Lempel Compression of Huge Natural Language Data Tries Using Suffix Arrays 211

8. J. A. Dundas, Implementing dynamic minimal-prefix tries, Software-Practice and
Experience, Vol. 21, No. 10, 1027-1040, 1991.

9. M. Gross, La construction de dictionnaires électroniques, Ann. Télécommun. Vol.
44, No. 1-2, 4-19, 1989.

10. M. Gross, Constructing Lexicon-Grammars, in Computational Approaches to the
Lexicon, eds. B.T.S. Atkins and A. Zampolli, Oxford University Press, 1994.

11. D. Gusfield, Algorithms on Strings, Trees, and Sequences, Cambridge University
Press, 1997.

12. T. Kowaltowski, C. Lucchesi and J. Stolfi, Finite automata and efficient lexicon
implementation, Technical report IC-98-2, University of Campinas, Brazil, 1998.

13. C. Lucchesi and T. Kowaltowski, Applications of finite automata representing
large vocabularies, Software-Practice and Experience, Vol. 23, No. 1, 15-30, 1993.

14. U. Manber and G. Myers, Suffix arrays: a new method for on-line search, SIAM
Journal on Computing, Vol. 22, No. 5, 935-948, 1993.

15. K. Morimoto, H. Iriguchi and J. Aoe, A method of compressing trie structures,
Software-Practice and Experience, Vol. 24, No. 3, 265-288, 1994.

16. T. D. M. Purdin, Compressing tries for storing dictionaries, Proceedings of the
1990 Symposium on Applied Computing, Fayetteville, Apr. 1990.

17. D. Revuz, Dictionnaires et lexiques: Méthodes et algorithmes, Ph.D. thesis,
CERIL, Université Paris 7, 1991.

18. S. Ristov, Space saving with compressed trie format, Proceedings of the 17th
International Conference on Information Technology Interfaces, eds. D. Kalpic
and V. Hljuz Dobric, 269-274, Pula, Jun 1995.

19. S. Ristov, D. Boras and T. Lauc, LZ compression of static linked list tries, Journal
of Computing and Information Technology, Vol. 5, No. 3, 199-204, Zagreb, 1997.

20. E. Roche, Analyse syntaxique transformationnelle du français par transducteurs et
lexique-grammaire, Ph.D. thesis, CERIL, Université Paris 7, 1993

21. M. Rodeh, V.R. Pratt and S. Even, A linear algorithm for data compression via
string matching, Journal of the ACM, Vol. 28, No. 1, 16-24, 1981.

22. M. Silberztein, INTEX: a corpus processing system, Proceedings of COLING-94,
Kyoto, 1994.

23. J. Ziv and A. Lempel, A universal algorithm for sequential data compression,
IEEE Transactions on Information Theory, Vol. IT-23, No. 3, 337-343, 1977.

Matching of Spots in 2D Electrophoresis Images.

Point Matching Under Non-uniform Distortions

Tatsuya Akutsu1, Kyotetsu Kanaya2, Akira Ohyama2, and Asao Fujiyama3

1 Human Genome Center, Institute of Medical Science, University of Tokyo
4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan

takutsu@ims.u-tokyo.ac.jp
2 Department of Bioscience Systems, Mitsui Knowledge Industry Co., Ltd.

2-7-14 Higashinakano, Nakano-ku, Tokyo 164-8555, Japan
{kanaya,akr}@hydra.mki.co.jp
3 National Institute of Genetics

1111 Yata, Mishima-city, Shizuoka 411-8540, Japan
afujiyam@lab.nig.ac.jp

Abstract. In this paper, we study pattern matching of points under
non-uniform distortions. First we give a natural definition for the prob-
lem. Next we present a simple polynomial time algorithm for the one-
dimensional case of the problem, whereas we prove that it is NP-hard
in two (or more) dimensions. Then we present a practical heuristic al-
gorithm for finding a matching between two sets of spots obtained by
the two-dimensional gel electrophoresis technique, which is a special but
important case of the problem.

1 Introduction

Matching of spatial point sets (i.e., comparing two sets of points) is an important
pattern matching problem, and thus many studies have been done in computa-
tional geometry [1,3,7] and pattern recognition [4,11].

In most studies in computational geometry [1,3,7], only uniform transforma-
tions (e.g., translations, rigid motions and/or scalings) were considered. However,
in some applications, non-uniform distortions may occur and thus pattern match-
ing based on local similarity is important. Pattern matching of spots obtained
by the two-dimensional gel electrophoresis technique is an important example of
such applications [2,6,12], where we are also developing a system named DDGEL
[8] for analysis of two-dimensional gel electrophoresis image obtained from ge-
nomic DNA by means of the RLGS (Restriction Landmark Genomic Scanning)
method [5]. In this application, positions of spots are distorted non-uniformly
and thus the methods developed in computational geometry are not directly
applicable.

On the other hand, in pattern recognition (and in image analysis of elec-
trophoresis data), many studies have been done for pattern matching under
non-uniform distortions [2,4,6,11,12] although most of them are heuristic.

M. Crochemore, M. Paterson (Eds.): CPM’99, LNCS 1645, pp. 212–222, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Matching of Spots in 2D Electrophoresis Images 213

Appel et al. considered transformation based on second-order and third-order
polynomials in order to cope with non-uniform distortions appearing in elec-
trophoresis image data [2]. However, their method (and many of other methods
for electrophoresis image analysis) uses so-called landmarks in order to find poly-
nomials, where landmarks are spot pairs intensively marked in both images by
the user and selected as putative matching pairs.

Several groups applied Delaunay graphs (Delaunay triangulations) and/or
relative neighborhood graphs for point matching under non-uniform distortions
[4,6,11,12]. In most of such studies, a Delaunay graph (or a relative neighborhood
graph) is first computed from each set of points, and then a maximum common
subgraph (or a similar structure) between two graphs is computed. However,
finding a maximum common subgraph is time consuming (it is NP-hard in gen-
eral) and thus various heuristics are employed in Delaunay based approaches. It
is natural question whether or not such a time consuming procedure is essential
for point matching under non-uniform distorsions. This question is a theoretical
motivation of this study.

This paper consists of two parts: theoretical part and practical part.
In the theoretical part, we give a natural definition for point matching under

non-uniform distortions, where similar formalizations are given in [6,11]. We
present a simple polynomial time algorithm for the one-dimensional case of the
problem, which is similar to well-known DP (dynamic programming) algorithms
for approximate string matching and sequence alignment. On the other hand,
we prove that the problem is NP-hard in two or more dimensions. This result
answers the above question: time consuming search procedures such as finding a
maximum common subgraph are essential for point matching under non-uniform
distortions unless P = NP .

In the practical part, we show a heuristic method for spot matching for two-
dimensional electrophoresis gel image data. Although this method is heuristic,
it uses an algorithm which is an extension of the DP algorithm for 1-D (one-
dimensional) case. The method is implemented in the DDGEL system and is
being tested using real gel image data.

2 Point Matching Under Non-uniform Distortion

2.1 Definition of the Problem

Let P = {p1, . . . , pm} and Q = {q1, . . . , qn} be point sets in d-dimensions,
respectively. We call a set of pairs M = {(pi1 , qj1), . . . , (pil

, qjl
)} a matching if

(∀h 6= k)(pih
6= pik

and qjh
6= qjk

).

Definition 1. (Point Matching Under Non-uniform Distortion)
Point matching under non-uniform distortion is, given a positive real ε, two point
sets P = {p1, . . . , pm} and Q = {q1, . . . , qn} in d-dimensional Euclidean space,
find a maximum matching M = {(pi1 , qj1), . . . , (pil

, qjl
)} (i.e., a matching M

with the maximum cardinality) satisfying

214 Tatsuya Akutsu et al.

(∀k)(∀h 6= k)(
1

1 + ε
<
|qjh
− qjk

|
|pih
− pik

| < 1 + ε),

where |p− q| denotes the Euclidean distance between p and q.

Note that P and Q can be exchanged in the above definition because 1
1+ε < x

y <

1 + ε if and only if 1
1+ε < y

x < 1 + ε. Note also that, in this definition, local
similarity must be preserved because error for two point pairs must be small if
distances between points are small.

2.2 A Simple DP Algorithm for 1-D Case

For 1-D case, point matching under non-uniform distortion can be solved by the
following simple dynamic programming algorithm, where only the procedure for
computing the scores of point pairs is shown. In the following, we assume that
points are already sorted in the ascending order (i.e., p1 < p2 < · · · < pm,
q1 < q2 < · · · < qn).

for i = 1 to m do D[i, 1]← 1;
for j = 1 to n do D[1, j]← 1;
for i = 2 to m do

for j = 2 to n do
begin

maxD ← 0;
for k = 1 to i− 1 do

for h = 1 to j − 1 do

if 1
1+ε <

|qj−qh|
|pi−pk| < 1 + ε and D[k, h] > maxD

then maxD ← D[k, h];
D[i, j]← maxD + 1;

end;

It is obvious that the algorithm works in O(m2n2) time. The correctness of
the algorithm follows from the proposition below.

Proposition 1. If both 1
1+ε <

|qj2
−qj1

|
|pi2

−pi1
| < 1 + ε and 1

1+ε <
|qj3

−qj2
|

|pi3
−pi2

| < 1 + ε

hold where i1 < i2 < i3 and j1 < j2 < j3, then 1
1+ε <

|q
j3
−q

j1
|

|p
i3
−p

i1
| < 1 + ε holds.

2.3 NP-Hardness Result for 2-D Case

In this subsection, we prove the following theorem.

Theorem 1. Point matching under non-uniform distortion is NP-hard in d-
dimensions where d ≥ 2.

Matching of Spots in 2D Electrophoresis Images 215

a b c d e

{ }a b c, , { }c d e, ,

{ }b c e, ,

Fig. 1. Example of a grid embedding of a planar graph for a 3SAT instance
{{a, b, c}, {c, d, e}, {b, c, e}}

Proof. Since details are complicated, we only show a sketch of the proof. We use
a polynomial time reduction from PLANAR 3SAT [10]. Let C = {c1, c2, . . . , cN}
be an instance of PLANAR 3SAT over the set of variables V = {v1, v2, . . . , vK},
where we assume that each clause ci consists of 3 literals. Note that, in PLANAR
3SAT, graph G(V ∪C, E) must be planar (see Fig. 1), where E = {{vi, cj}|vi ∈
cj or vi ∈ cj} ∪ {{vi, vi+1}} ∪ {{v1, vK}}.

From this instance, we construct an instance (P, Q, ε) of the point matching
problem. The construction will be made up of several components, which can
be partitioned into three parts, grouped according to their intended function:
“truth-setting” components, “satisfaction-testing” components, and “routing”
components.

First we describe “satisfaction-testing” components (see also Fig. 2) since
these are the core parts of the construction. For each clause ci, we construct a
set of points Ti = {p0

i , p
1
i , p

2
i , p

3
i , q

1
i , q

2
i , q

3
i , q

1t
i , q2t

i , q3t
i , q1f

i , q2f
i , q3f

i }, where

p0
i = (0, 0),

p1
i = (0, L), p2

i = (−
√

3L
2 ,−L

2), p3
i = (

√
3L
2 ,−L

2),
q1

i = (0,−αL), q2
i = (

√
3αL
2 , αL

2), q3
i = (−

√
3αL
2 , αL

2),
q1t

i = (0, (1− α)L), q2t
i = (−

√
3(1−α)L

2 ,− (1−α)L
2), q3t

i = (
√

3(1−α)L
2 ,− (1−α)L

2),
q1f

i = (0, (1 + α)L), q2f
i = (−

√
3(1+α)L

2 ,− (1+α)L
2), q3f

i = (
√

3(1+α)L
2 ,− (1+α)L

2),

and each Ti is to be translated to an appropriate position.

i
p 0

i
p 1

i
p 2

i
p 3

q
i
1f

q
i
1t

q
i
3t

q
i
3f

q
i
2

q
i
1

q
i
3

q
i
2t

q
i
2f

Fig. 2. “Satisfaction-testing” component

216 Tatsuya Akutsu et al.

Here we let ε = 2α. Then we can see the following relations hold for small α
(α < 0.22):

(∀j)(|qjf
i − qj

i | = (1 + ε)L), (∀j)(
(

1
1+ε

)
L < |qjt

i − qj
i | < (1 + ε)L),

(∀j)(∀k 6= j)(
(

1
1+ε

)
L < |qjt

i − qk
i | < (1 + ε)L),

(∀j)(∀k 6= j)(
(

1
1+ε

)
L < |qjf

i − qk
i | < (1 + ε)L).

From these, the followings must be satisfied (in order to make |M | = |P |):
(a) if (p0

i , q
1
i) ∈M , then (p1

i , q
1t
i) ∈M , (p2

i , q
2t
i) ∈M or (p2

i , q
2f
i) ∈M ,

and, (p3
i , q

3t
i) ∈M or (p3

i , q
3f
i) ∈M ,

(b) if (p0
i , q

2
i) ∈M , then (p2

i , q
2t
i) ∈M , (p1

i , q
1t
i) ∈M or (p1

i , q
1f
i) ∈M ,

and, (p3
i , q

3t
i) ∈M or (p3

i , q
3f
i) ∈M ,

(c) if (p0
i , q

3
i) ∈M , then (p3

i , q
3t
i) ∈M , (p1

i , q
1t
i) ∈M or (p1

i , q
1f
i) ∈M ,

and, (p2
i , q

2t
i) ∈M or (p2

i , q
2f
i) ∈M .

Here we assume that ci = {v1, v2, v3}. Then, case (a) corresponds to a case
where v1 is satisfied, case (b) corresponds to a case where v2 is satisfied, and
case (c) corresponds to a case where v3 is satisfied.

Next we describe “truth-setting” components. For each variable vi, points as
shown in Fig. 3(a) are constructed, where the points are partitioned into three
subsets: Pi,Qt

i,Q
f
i . It is easy to define coordinates so that if at least one point in

Pi corresponds to some point in Qt
i (resp. Qf

i), then Pi must correspond to Qt
i

(resp. Qf
i).

Next we describe “routing” components. Here we assume that a grid embed-
ding of G(V ∪C, E) is already obtained as shown in Fig. 1. Note that a grid em-
bedding of size O(N)×O(N) can be computed in linear time from G(V ∪C, E)
[9]. According to this embedding, we connect “truth-setting” components to
“satisfaction-testing” components. In oreder to connect “truth-setting” compo-
nents to “satisfaction-testing” components, the following constructions are im-
portant: (i) copying a truth assignment; (ii) inverting a truth assignment on vi

(b)

true false

true

false

true

false
(a)

P
i

true false

Q
i
fQ

i
t

Fig. 3. (a) “Truth-setting” component and (b) “Routing-component” for copy-
ing a truth assignment

Matching of Spots in 2D Electrophoresis Images 217

ci = { }a b c, ,ci = { }a b c, ,

truefalse truefalse true false

a b c
true false truefalsetrue false

a b c

Fig. 4. Connection from “truth-setting” components to a “satisfaction-testing”
component

(i.e., creating vi); (iii) connecting a truth assignment to a “satisfaction-testing”
component. (i) can be done as in Fig. 3(b) and (ii) can be done in a similar way.
(iii) can be done as in Fig. 4, where each bold line denotes a sequence of points.

Then, it can be proved for an appropriate value of ε that there exists a
maximum matching M satisfying |M | = |P | if and only if there exists a truth
assignment satisfying all clauses in C.

Although we omit details, the total number of created points is polynomially
bounded and thus the construction can be done in polynomial time. ut

3 A Practical Algorithm for 2-D Gel Image Data

Although the DP algorithm in Section 2.2 is valid only for 1-D case, the idea can
still be used as a heuristic for matching of 2-D points. In this section, we describe
a pattern matching method based on such a heuristic algorithm. The method
is implemented in the α-version of the DDGEL system (http://bonsai.ims.u-
tokyo.ac.jp/cgi-bin/ddtop/cgi-bin/index.cgi) [8], where DDGEL is an image anal-
ysis system for 2-D gel electrophoresis obtained from DNA by means of the RLGS
(Restriction Landmark Genomic Scanning) method [5].

The matching method consists of two major steps: finding an initial matching
and finding the final matching. In the first step, we find a rough matching between
two point sets. In the second step, we first transform P according to the result
of the initial matching and then we compute and refine matchings. The heuristic
algorithm mentioned above is used in the first step. The first step corresponds
to the matching by landmarks used in several practical systems [2]. But, in our
case, we do not need landmarks.

Note that, in analysis of 2-D gel images, the spot detection step is also required
in order to extract spots from the original gel images, where we use standard
image processing techniques for this step. Since spot detection is out of the scope
of this paper, we do not describe the details of spot detection.

In the followings, for a point p, (p)x (resp. (p)y) denotes x-coordinate (resp.
y-coordinate) of p. If (p)x > (q)x and (p)y > (q)y hold, we write p � q.

218 Tatsuya Akutsu et al.

3.1 Finding an Initial Matching

In point matching of 2-D gel image, we consider the L1 distance

d1(p, q) = |(p)x − (q)x|+ |(p)y − (q)y|,

instead of L2 distance used in Section 2, because a 2-D gel image is usually
obtained by using two enzymes: one for the direction of X-axis and the other
for the direction of Y -axis. Although we do not yet prove an NP-hardness result
for this case, this case seems to remain NP-hard.

For this case, we have the following proposition:

Proposition 2. If both 1
1+ε <

d1(qj2
,qj1

)

d1(pi2
,pi1

) < 1 + ε and 1
1+ε <

d1(qj3
,qj2

)

d1(pi3
,pi2

) < 1 + ε

hold where pi3 � pi2 � pi1 and qj3 � qj2 � qj1 , then 1
1+ε <

d1(qj3
,qj1

)

d1(pi3
,pi1

) < 1 + ε

holds.

Based on this, we can obtain a longest sequence ((pi1 , qj1), . . . , (pil
, qjl

)) sat-

isfying (∀h 6= k)(1
1+ε <

d1(qjh
,qjk

)

d1(pih
,pik

) < 1+ ε), (∀h)(pih+1
� pih

) and (∀h)(qjh+1
�

qjh
), by means of a simple DP algorithm similar to that in Section 2.2.
However, in this case, we obtain a matching only for points in a diagonal-like

region. Such a matching is not sufficient for an initial matching. Therefore, we
use the following DP algorithm for finding an initial matching. In this case, there
is no longer any theoretical guarantee for the obtained matchings. However, it
worked well when the number of insertions and deletions of points was not large
and the distortion was not very large.

for i = 1 to m do
for j = 1 to n do

begin
score← 0; maxscore← 0; count← 0;
for each pk ∈ neighbors(pi) do

for each qh ∈ neighbors(qj) do
if d1(pk − pi, qh − qj) < α1 · |pk − pi| then

begin
if S[k][h] > maxscore then maxscore← S[k][h];
count← count + 1; skip to next pk;

end;
S[i][j] ← maxscore + 2 · count + 1;

end

In the above, neighbors(p) denotes the set of K1-nearest points p′ of p such
that p � p′, where K1 is a constant (we use K1 = 6 in the current implemen-
tation). α1 is also a constant depending on the size and the density of input
point sets, where we use α1 = 0.4 in the current implementation. In order to
find matching pairs in non-diagonal regions, we use maxscore + 2 · count + 1 as

Matching of Spots in 2D Electrophoresis Images 219

a score, where there is no concrete reason for using this value. The procedure
works in O(mn) time for a constant K1. Note also that only the procedure for
computing scores of point pairs is described in the above. A set of point pairs
(i.e., an initial matching) is obtained from the scores by a traceback-like method,
where we omit details here.

3.2 Finding the Final Matching

In the second step, we compute the final matching based on the initial matching
found in the first step. As in the first step, there is no theoretical guarantee for
the obtained matchings. Since several heuristics are used in the second step, we
only describe an outline of the procedure. We call that p is locally similar to q,
if the following condition is satisfied:

|{pi| pi ∈ neighbors(p) and (∃qj ∈ neighbors(q))
(d1(pi − p, qj − q) < α2 · |pi − p|) }| > K2

where α2 and K2 are constants depending on the size and the density of input
point sets. We use α2 = 0.25 and K2 = 4 in the current implementation. In this
case, neighbors(p) is the set of 10-nearest neighbors of p.

(1) From the set of pairs {(pi1 , qj1), . . . , (pil
, qjl

)} found in the first step, com-
pute the affine transformation TR : (x, y) −→ (ax + b, cy + d) such
that

∑
k |TR(pik

)−qjk
|2 is minimized, by means of the least squares fitting

method. Then, we apply TR to P .
(2) Apply the DP algorithm to P and Q again and execute (1) again.
(3) For each point p ∈ P , find a corresponding point q ∈ Q (if there exists)

such that |p−q| < D and p is locally similar to q (currently we use D = 20).
(4) Apply the local transformation to each point p ∈ P , where the local trans-

formation is computed from neighbors(p) and neighbors(q) by means of the
least squares fitting method.

(5) Repeat (3) and (4) for several times.

3.3 Examples

Here, we show examples where the above method was applied to point sets
obtained from real RLGS image data. Although we applied the method to several
data, we only show two typical examples here. The method is implemented on
a SUN Ultra-2 workstation with 300MHz CPU and 640MByte main memory
using C-language.

The first example (see Fig. 5) is an easy case: the number of insertions and
deletions of points is small and the distortion is small. In this case, 1052 pairs of
matching points were found where P consisted of 1128 points and Q consisted
of 1148 points. It took 32.7 sec. in total.

The second example (see Fig. 6) is a rather difficult case: either the number
of insertions and deletions or the distortion is not small.

220 Tatsuya Akutsu et al.

a

a
aa

a
a

aaaa

a a
a
a

a

a

a

a

a

aa

a

a
a

a
a

a

aa

a

a

aa a
aaa
a
a a

a aa
a

aa

a

a

a
aa

a
a

a
a

a

aa

a
a

a

a

a
a

a

a
a

aa
a

a

aaaa

a
aa

a

a
a

a

a

a
a

a
aa
a

a
a

a

a
a

a

a

a
a

a
a

a
aa

a

a

a

aa
aa

a
a

a
a
a

a

aa

a

a

a

a

aa
a
a

a
a
a
aa

a

a

a
a

aa
a
a

aaa

a
a
aaa

aaa

a

a

a

a

a

a

a

aaa

a
aa

a
a
a

a
a

a

a

aa aaa a
a

a

a
aaa

a

aaaa
aa

aa
a
a

a
a

aa
aaa

a a

a aa

a

a
aa

a
a
a

aa
aaaa

a

aa

a a
a a

a
a a

a a

a a
aa
a

a

aa
a

a
a

a

a

a

a

a
a aa a a

a
aaa

a
a

aa

a a

aa

a

a

a

a aa
a

aa a a
a
aa
a aa

aa

aa

a
aaa

a
a a

aa
aa

a a
a a
aa

a aa
aa aa

aa

aaa
a aa

a a
aa

a
aa a

aa
a

a
aa

aaa

aa
a a

a
a
aa

a aa

aa
a

a

a

aa

aaa a
aa

a
a a

aa

aa
a
a

a

a
a

a
aaa

a a aa aa
a

a
aa

aaa
aa

a
a

a

aa
a

a
a
a
a

aaa a
a

aa
aa
aaa

aa
aa

a
a
a

aa a
aaa

aa
a

a
a

a

aa

a
a
a

aaa
a

a

a
aa

a aaa a a
a
aa

a
a

a

aa
a

a
a

aaa
a
a
aa

aa
aaa

a a
a

a

a

a
a
a a

a

a
a

a a
aa
aa
a

a
aa

aa
aa
a
aaa

aa

a

a
a

a

aaaa

a
a

a

aa

a

aaaa

a

aa

a

a

a
aa

aa
aa

a

a
a

aa

aa
a

aa

aaa
a
aa

a

a
aa

a

aa
aa

aaaaa
a

a
aa

a
a

a

a
a
aa

a
aa

a
a

aa
a

a
aa

a
aa
a
a

a
a
aa

a

a
a

a

aa

a
aa

a
a
aa

aaa
aa
a
aa

a
a

aa
a

a
a
aa

a
aa
a
aa

aaa
a

aa
aa
a

aa

a

a

a

a
a
a
a
a
a

a
aa

a
aa

a

a
a

aa

a
aaa

a
a

a
a
aa

a

aa

a

a

aa

a

a
a

aa

a
a
aa
aa

aa
a
a a
a

aa
aa
a

a

aa

aa
aa
a

a
a

a

a
a

a
aa

a
a
a

a
a a

a
a

aa

aa

a
a

a
a
a

a

a
a a
a

a
aa
aa

a
aa a

a
aaa

a
a a

a

a
a aa

aa
aa

a

a a

aa
a

a

a
a
a

aa
a

aaa
a

a
a

aa

a

a

aa

a a

a

aaaa
aa
a a

a

a

a
a

a
aa
a a

a a
aa

a a
a

a
a
a

a
a

a

a

a
a

a

a
a

a
a

a

a
a

a

aa
aa

a
aa

a
a

a
aa

a

a
a
a

a a
aa

a

a a
a

a
a
a

aa
a
a
a
a a a

aa
a aa a

aa
a

a
aa

a
a

aaa
a
a
a

a
a a

a
aa
a a
aa
a

a

a a
a

a

a
a a

a a
a

a
a
a

aa
a

a
aa

a a
a

a
aa
aa

a

a a a

a

a
a
a

aaaa

a
a a

aaaaa

aa
a
a
aa

a a
a
a
a
a
a

a aa

a
a a
a

aa aa
a
a

a
aa

a

a

aa
a a a a

aa

aa
a a

a

a
a

a

aa

a a

aa

a
aa
a

aa

a
aaa

aa a

a
a

a

a
a

a

a

aa

a
a
a

aa

aa
a

aa

a
a

a

a
a

a
a
a

a
a

a
aa
a

a
a

a
a
aa

a
a

a

a
a

a

aaa
aa

a
a
a

aa
a
a

a
a

a

a

aa
a

a

a

a

a

aa

a

aa

a
a
a

a

a

aa
a
a

a

aa

a

a
aaa

a

a
a
a

aa

a

aa
a

a
a

a
a

a

aa

a

a
a
a
a
a
aa

a
a

a

a
a

a a

a
aa

a
a
a

a a a a
a

a
a a

aa
a a
aa
a aa

a

a
a
a

aa
a

a

a a

a
a

a

a

a

a

a

aa

a

a

a
a aa

a

a
a aaaaaa

a
a
aa
a

a

a a a

aa
a
a
a

a
a
a

aa
a

a
aa

a
a
a a

a

a aa

a

a
a

a
a

a

a
a
aaa
a

a

a
a

a
a

a
a

a

a

a
a

a a

aa aa
aa
aa a

a
a

a
a
a
a

a

a

a

a

a

a
a

aa

a

a

a a

a
a

a

a

a
a
a
a
a

a

a

a
a

a

aa

aa
a

a
a a aa

a

a
a

a
aa
a
a a

a a

a
a

a

a

a

aaaa
aa

aa
aa

a
a
aa

aa

a
a

aa
a

aa
aa

a
a
a
a

aaa
a a

a a
aa

a
aaa
a

aa
a

a

aaa a
aa

a

aa

a
a
aa

aa

aa
a

a

aaa
a

a
a
a

a

a

a
a

aaa
aa
aa

a

aa

aa
a

a
a
a
a

a
a

a

a

aaa

a
a

a
a

aa

aa
a

a

a
a

aa
a
aa
aaaa

a

a
aa

a
a
a
a
a

aa
a

a

a
a
aa

a
a
a

aa

a

a
aa

a

aa
a

aaa

a

aa

a a

aaa
a

a aaaa
a aa
aaaa

aa

a
aa

a

a
a

a
a
aa

aa

aa
aa
aaa

aaa

aa
aa

aaa

a
aaa

a a
aaa

aa
a
a

a

a
a

aa
a

aa

a

a

a

a

a

aa
a
a
aaa

a
aaa
aa
a

a

a

a
aa

aa
aa

aaa
aa

aa
a

a

aa

a

aa

a
aa

aa
aaa

aa

aaa

a
a

a
a

a
a
a
a
a

a
aa

a
aaa

a
aa

a
a
a
aa
a
aa

a
a
a

a
a
a

a
a

aa
a

a

a

aa

a
aa
aa

a

aa a

a
aaa a
a

a
aa

a
a

a
a
aa

a
a

aa

a

aa
a
aa

a

a
a a
a

a
a

a

aa
a

aa

aa
a

aa
aa

a
a
aa

a
a
a

a
aa

a
aa

a

a
aa
aa

a
aa

a

a
a
a

a

a

a
a

a
aa

a
a

aa

a

a

a
a

a

a

a
aa
a

a
a
a
aa

aaa

a
a

aaaa

a
aa

a
a

aa

aa

a
aa

a
a

a a
a

aa
a a a

aa

aa

a
aa

a

a

a

a
a

a

a

a

a
a

a aaaaa
a

aa
aa

a
a
a

a
aa

a
a
aaa

aaa
aaa

a
a

a
aa

aa
a
a

a

a
a

a

a

a
a a

a a
aa

a
a

a
aa

a
a

aa
aaa

aa
aa

aa

a
aa

a
a

a a
aa

a aa
a

aa

a a
a
a

a
a
a

a

a
a

a
aaa
aa
aa

a
aaa

a
aa

a
a
a

a

a
a

aaa
a a a

aaa

a a
aa

a
a
a

aa a
a a

a

aa a

aaa
a
aa

a a
aa

a

aa
a
a
aa

a

a

aa

aa
a

a
a

a

a
a a

a a a

a

a aa

a
a a

a
a

a

a
aa
aa
a
a a
a
a

aa

a
a
aa
a

a
a

a

a a
aaa

aa a

a

a

a
a
aa a

a a

a

a a

a
a

a
a
a
a

a
a
a

aaaa
a a a

a

a
a
a

a
aa

a
a

a

a
aa
a

a

a
a
a

a
a
a
a a
a
a
a
a

a
aa

a

a

aa
a
a

a a
a
a

a
aa

a
a a

a
a a

a
aa

a

a
aa

a
aa

aa
a
a

a
a

a
a

a
a
a aa

aa

aa
aa

a
a
a

a

a
a
a

aa a a
a
a
a

aa
a a

a
a a

a
a
a
a
a
a

aa
a
a

a

a

a
a a
a
a

a

a

aaa
aa

a

a

a
aa

aa
a
aa
a

a
aaa

a

a
aa
a

a
a

a
a
a

a a

aa
a

a

a

a

a
a a

a
a

aa
a

a a

a
a
a a

a

aa

a
a
a
aa

a
a
a

a
a

a

a
a

a
aa a

aa
a

a

aa a
aaa
aa

a
aa

a

aaa

a
a

aa
aa
aa a
a
a a

a

a

a
a

a
aaaa

aa
a

a
a

a
a

a a
a
a

a
a

a

Fig. 5. Example 1. The point set on the left hand side (P) consists of 1128 points
and the point set on the right hand side (Q) consists of 1148 points. In this case,
1052 matching pairs were found.

a

a

a

a
a

a

a
aa

a
a

aaa a
aa

aa
a

aa a

aaa

aa
a

aa
aa aaa

a

a
aaa
aaaaa aa

aa
a a
aa
a

a
aaaa

aa
aa a

a
a

a a

a

a

a

a
a

a
a
a

a
a

a

aa
a
aa a
a

a aa
a

a
aa

a

a
a a
a
a

a
aa

a

a

a
a

a
a

a a

a
a

a
aa

aaaaa a
a
aaaa

a

a

aa
aa

a
a

a a a

a a

a
a

a

a

a

aa

a

aa

aa

a

a a

a
aa

a
aa

aaa
a

a
a

aaa
aaa

a
a
a

aa
aa

a
a
a a

a
a
a

a
aaa

aaaa

aa
aa

a

a

aa

aa

a
aa
aa
aa

a aa
a a

aa
aa

a
aa

a a

a a

a
a aa

aaaa

aa

aaa
a

a a
aa

a
a

aaa

a

aa
a a
a

a a aa

a

a

a

a
a

aa
a a a
a
a a

a

a
a

a
a

a

aa

a a
a

a

a a
a a
a

a a a

a a

a a
a
a

aa
a

a
a aa
aa

aaaaaaa
aaaa

aaaaa
aaaa

a a
a a

aaa
a

a aa
a

a a a
aaa

aa
aa
a
aa

a aa
aaa

aaaaaa
a
a aaa

a

a

a a
a
aa

a

a
a
a aa

a aa

a a
a

a

a
a
a
a

a
a
a
a

a

a
a

aa

a

aaaa
aa

aaa a aa
aa a

aa
a

a
aaaa a

aaa
a

aa
a
aa a

a

a
aa

aa
a aa aa

a a aaaa
a
aa

a
a

aaaa
aa

a
a
aa a

aaa

a
aa
aaaa
aa
a

a
aa

aaaaa

a
aa

aa
a

aa aaaa
a a a

aa
a

aaa a
aaaa

a
a
aa
a

aaa
a aaaa
aaaaa

a
a
a

a
a
aaaaaa

aaaa
aa

aaaa

aaaa
a
a

a
aaaa

aa
a
aa

aaa

aa
a
aa
a a
a aaaaa

aaaa

a
a

a aa
aa
aaa

aa

aaa
a
a
a aa
a a

a
aa

a

a
a
aa
a
a

a
aaa

aa
aa

aa
a
aa

a
a
aaa

a
aaaaaa

a

aa

aa
a
a

a
a

a
aa
a

aa

aaa

a

a
aa

aa

a
a
a

a
a

a
a

aa

a
a
aa

a
a
a

aa

aa
a

aa

a
a
a
aaa

aa

aa
aa

a
a

aa
a

a
a

aa
a
a
a

aa

a
a

a

a
aa
aa

a
aa

aa
a

aa

a
a
a
a

a
a
aaaa

a
a

aaa

a

aaa

aa
a
a

a
a

a

aa
a

a

a
a
a
a

a

a

a

a
a

a

aa

a
a
a

a
a
aa
a
a
a

a
aa

a

aaa
aa

a

a
a
a

a
a
aaa a

aaa
aa

aa
aa

aa

aaaa
a

aa
a

aaa

a

aaa
a

a
a

aaaa

a
a a
aa a

a

a

a
a
aaa

a
aa

a
a
a

a
aa
a

aa
a
aa
aaa

a

a

aa
a aa
a

aaaaa

a

a

a
a

aa

a

a
aa
aa

a
aa

a
a

a
a

a

a

a
a

a
aaa

a

a
a a

a

a

a

a

aa a

aa
a
aa

aa
a a a a

a
a
aaa

a
aa

a
a
aaa

a
a

aaa

a

aa
aaa

a

a

aaa

a

aa

a
aa

a

a
aa

a
a

aa
aaaa

aaaa
aaa

a
a a

a
a a

aaaaa
a

a
a
a

a
a aa

aa
a
a

aa

aa
aa
aa
a

a
a a

a a
a
a

a
aa

aa
a
aa a

a aa

aa

a

a

aaa
aa

aa
aa
a

a

a
a
a

aa

a

a

a
a

a

aa

a
a

a

a
a
a

a
aa

a

a

a

a

aa
a
a

a
aaaaa

a

aa

a
a
aa

a
aa
a
aa
a
a

a
a
a

a
a

a
a

a
a

a
aaa

a
a a a

aaaa
a

a

a
a

a
a
aa

aa

a a
a

a

aa
a
a

a

a

a
aaa

a
a

aa
a aa

a a
a
a

a

aaa

aaa

a
aa
aaaa

aa
a
aaaa
aa

a
aa
a

a
aaa

a
a

a
aa
a

a a

a

a
a

a
aa a

a
a

a

aa
aa

a aa

a
a a a

a
a
aaa

a

a
a
a

aa

aa

a

a
aa a

a
aa a

aa
a a

a aa
a

a

a
a
a
a
a
a

a

a
a

a

a
aa

aa
aa

aa a
aaa

aa

a

a
a

aa aa
a

a
a

aa

aa
a

a
aa

a
a

a
a
a a
aa
a

aa a
aa a

a a
a a

a
aaaa a aa

aaa
aaa

aaa
a
a
a

aa
aa
a a

a
a
a

aa
a

a
a
a

aa
a
a

aa
a aa
aa

a

a

a
aaaa

a

aa
a

a

a
a
a
a

a

a

a

a

aaa
a

a

a

aaa
aa

a a
a

a a a

a

a

aa
a
a
a a

a
a

a

a

aa
a

a
aaaaa

a
aa aa

aaa
aaa

a a
a

a
a
aaa a

aaa
aaa

a
aa
aa
a

a

a

aa

aa a
a

aaaaa
aa
aa
a

aa
aa
a

a

aa
a
a
a

aaa
a

aaaa

aaaa
a

a
a
a

aa
aa
aa
aaa

a
a

aaaaaaaa
a
a
aa

a
a

a
a

a
aaaa

a

a
aa

aa
a
aa
a
a

a
a
a
a a
aa

a
aa

aa
aa

a
aaa

aa
a
a

a
a

a

aa

a

aa
aa

a
a a

a
a
a
a

a

a
a

a

aa

a
a

a
aa

a

a

aa
aa
aaa

a
aa

a

aa

aa

a
aaa

a
a
a

a
aa

a

a
aa

a
aa

a
aa

aa aa
a

a
aa

a

a
a a

aa

aaaa

a
a

a

a
a
aa

a

a
a

aa

a
a

a
aa
a

a
a

a

aaaaa
aa
a a a

a
aa

aa
aa
aa
a

aaaa

aa

a

aa
a

a
aa
aa

a

a

a
a
a

a

aa

a

a
a
a
aaaa

a
a

a
a aaaa

a

aa

aa

a
a

aaa

a
aa

aaa
a
aa
a aa aa
a

a
aaaaaaaa

aa aaa
a
aa
aaa

a a
a

aa
a

a a
a

aa
a

aaa
a a
a

a

aa aaaa

a
aaa
aa
aa

aa
a

aaaa
aa

aa

a a

a
aa

a a
a
a
a
a
a
aa

a

a

a
a a
a

aaa
aa

aaa a
a
aa
a
aa
aaa

a
aa
aa

a
a a

a
aa

a a aa
a
aaaa
a
a
a
a

a

aaa
aaa
aaa

a
a
aa
a
a
a

a
aa a a

a a

a aa
aa

a
aa

aa a
a

aa a

aa
aa

aa
a aa
a

a

a

a
aaaa
aaa

a

a
aa

a

a

a

aa
a

aa
a
aa
a

a
a

a
a

aaa
aa
aaa

aaaa

aaaaa
a aa
aaaaaaa

a aaaa
a

aa
a
a a

a
aa a

aa

a a
a aa
aaa

aaaa
a
aa
a
aa
a

a
a

aaa

a

aa
aaaa
a
a

a
aa

a
a
aaa

aaa
a

aa
a
a
aa a

aaaaaa

a a a
aa a

a
aaa

a

a
aaa a

a
a
a a

aa
aaaaa

aa a

aa a
aa

aaa
a
aa
a
a a

a
aaa aa

aa
a aaa

aa

a
a
a
a
aaa
aa

a
aa

aa
a

aa
aa
a

a

a

aaaa
a

aa
a
aaa

aaa
aa aa

aaa
aaaaa
aaa

aaaaa a
aaa

aa
a
a
a

a
a
a

a

a
a
a

a
a
a

a
a
aa

aa

aa
aa
aa
a

aa
aaaaaa

a
a

a
aa
aa

a

aaa
aaa
a

aa
aa
aaa

aa
a

a
aa

a
a a
aaaa

aa

aa a
a

aaaa

a
a
a

a
aa

a
aaa
aaaa

a
aaaaaa a
aaaaaa

a
aa

a a a
aaaaa

a a
a

aa aaa a a
a

aa a aaaa
a
a aaa aa

aa
a aa

aa
aaaaa

aaaa
a

aa
aa

a
a

a

a
a

a
a
a

a
aaa
a

a

a
a

aaaa
aaa

a

a
aaa
a
aa
aa
aa

aa

a
aa

aa aaa
aaaa
a
a
a

a

aaa
a
aa
aaa

a a
a

aaaa
a

a

a
a
a

aaaa

a
aa

a

a
aaa
a
a
aa

a

a
aaaaaaa

a
a

a
aa

a
aa

a
a

aaa

aaa

a
a
aa
a
aa
a
aa

a
aa

aaa

a
a
a

a

a
a
aa

a
a

a
a
aa
aaaaa

aa
a

aa
a

a

a
a

a
aa

a
a
aa

aa

a

a
a

a
a
aa

a

a

aaaa
aaa

a
aaa

a
a
a

aaa

aaa

a

a
aa

a

aaa
a
a
a
a

aa

aa
aa
a

a

a

a
aaaa

aaa aa
aa
aa
aa

aaa
a

aaa
a
aa

a
aaa

a

a
aa
a

a

a
a
a

a
a

aa
aa

aa

a

a

aa

aaaa

a

aa
a

a

aa

a
aa

aaa

a

a

aa
a
aaa

a
aa

a
a

aa
a aa
a aa

aa
aaa

a
a
a

a
a
aa

aa
a a

a

aa
aaa

aa

a
a

aa
a
a

a

a

aa
aa
a

a

a

a

a

a
a
a
a a

a a

a

aa
a a

a
a
a

a

a
a
aa

aa
aaa aaa

aa
aa
aa aa

aaa a

aa

aaa
a
aa
a

a
a

a
a
a

aa
a

a
aaaa

aa
a

a a a a
a a aa

a

a

a
a

a

aa

a a

a

a

aaa

aa
aa
aaaa

a

a
a

aa
a a

a
a
a

a
a

a

a

a

a

a
a

a

a
aa

a

a

a a
a
aaaa

a
a

a

a

a
a aaa

a
a

a

a

aa a
a

a

aaa
aa

aa
a
a

a
aaa

a
aaaa aa a

a
a

aa

aaa
aaaa a

aaa

a
a a

a

a

a

aa
a
a a

aa
aa
a

a
a

aa
a
a
aa a
a

aa
aaa

a
aa
a
aa
aaaaa

aaaa aa
aaa

a
a

a
aa
a

a
aa a

a
a

a
a

a
a

aa
aa

a

a a
a

a
a
a

aa

a

aa
aaa
aa
aa

a
aa
a
aaa

a
a

a
aa
a
aa

a
a

a

a
aa a

a

a

aa a a

aa
aa
aa

a
a

a
aa

a
a

aaa
a

aa

a
a

a

a

a
a

aa

a

a

a

a
a

aa

a

a

a
a

a
aa

a
a

a
a

a

a

a

a

a

a
a
a

a
a

a
a

a

Fig. 6. Example 2. The point set on the left hand side (P) consists of 1363 points
and the point set on the right hand side (Q) consists of 1682 points. In this case,
824 matching pairs were found (see also Fig. 7).

Matching of Spots in 2D Electrophoresis Images 221

a
a

a aaa aa a
a aa aaa aaa aaaaa a aaa a aa aa a aaa aa aaa aa aa aaaa aaa a a aa aa a a aaaa aa aaaaa a aa a aa a aa a aaa a aa aaa a aa a aaa aa aa a aa aa aa aaa a aa a aa aa aa aa aa aaa a aaa a aa aaa aaa aa a aa aaa aa a aaa a aaa a aaaa a aaa a a aaa aa aaa aa aaa a a aaa aa aaa aaa a aa a aaa aaaa aa aa aa a aa aaa a a aaa a aa aaa aa aa aaa a a aa aa aaaa aa a aa a a a aa aa aa aa aaa a aa a aaa a aaa aa aa aaa a aa a aaa a a aa aaa a aa a aa a aa aa aa aa aa a aa aa aaaa a aa a a aaa aaaa aaa aa a aa a a aa aa aa a aa a a aaa aa a aa a aa aa a a aa aa aa aa aa aa aa aa a aa a a aa aa a a aa a aaaa aa aaaa a aaa a aa a aa a aaa a a aaaa a aaa aa a aaa a aa a aaa aa aa a aa aa a aa a a aaa a a aaa aa a a aaaa a a aa a aa aa aa aa a aa a aa aaa a a a a aa aa aa aaa aaaa a aa aa a aa a a a aaaa a aaa aa aaaa aaa aaa aa aa a aa aaa aaa a aa aa aaa a aa aaa aa aaa a aaa aa a aaaaa aaa aa a a aa aa aa aaa aaa aa a a a aaaa a a a aaaa a aaaaaa aa a aa aa aa aaaa aaa a a aa aaa a a aa a aaa aaaa aa aa a aa a aaaa a aa a aaa a a aa aaa a aa aa aa a aa a aa aaa aa a aaaa aa aaa a a aaaa a a aa aaaa a a aa aaa a a aa aa a a aaa aa a aa a a aa a aa aa a aa aa aaa aa aaaa aa a aa a aa aa a a aa aa aaaa a a a aa aa aa a a a aa aa a aa a aaa a aaa a a aaa aa aa aa aa a aa aa a aaa aa aaa aa aaa aa aa aaa aaa aa aa aaaa aa a a aa a aa a aaa aa aa aa aa aa a aa aaa aaa a a a aa aa a aa aa a aaa aa aaa aaa a aa aaa aa aa aa a aaaa a aa aa aa aa a aa aa aaa a aaa a aa aaaa a a aaa aaa aa aa aa aa aaaa aa a aa aaa aa a a a aa aa a aa aaa aa aa a a aaa a aa aa a aaa aa aaa aaa aa a a aaa a aaa aa aa aa a aa aaa a aaa aa aa aa a aaa a a aa a a aa aaa a aaaa aaaa a aaa a a aa a aa aaa a aa aaa aaa a a aaa a aaa aa a aaa a a aa aaaa a aa aaa aa aaa a aa a aa a aa aa a aa aa aa aaaa a a a aaa a a a aa a aa aaa a aa a aaaa aa aa aaa aaa aa aa aaa aa aaa a a aa a a aaaaaa a a aaa aa a aa a aa aaaa a aa aa aa aaa aa aa aa aa a aa aaa aaa aa aa aaa a aa aaa aa aa aa a aa aa aaaa a aaa aa a aaa aa a a aaaa a aa a aaaa aa a aa aaa aa aa a aa aa aa

Fig. 7. Result of point matching in Example 2, where one point set (P) is trans-
formed by a non-uniform transformation.

A good matching was still found in this case: 824 pairs of matching points
were found where P consisted of 1363 points and Q consisted of 1682 points.
It took 57.7 sec. in total. The result of the matching is shown in Fig. 7, where
P is transformed by a non-uniform transformation generated by the matching
program.

Acknowledgment

We thank Prof. Hisao Tamaki in Meiji University for valuable suggestions. He
suggested us the use of PLANAR 3SAT for proving the NP-hardness result in
2-dimensions.

References

1. Alt, H., Melhorn, K., Wagner, H., Welzl, E.: Congruence, Similarity and Symmetries
of Geometric Objects. Discrete and Computational Geometry 3 (1988) 237–256

2. Appel, R.D., Vargas, J.R., Palagi, P.M., Walther, D., Hochstrasser, D.F.: Melanie
II - A Third Generation Software Package for Analysis of Two-dimensional Elec-
trophoresis Images: II. Algorithms. J. Electrophoresis 18 (1997) 2735–2748

3. Cardoze, D.E., Schulman, L.J.: Pattern Matching for Spatial Point Sets. In: Proc.
39th IEEE Symp. Found. Comput. Sci. (1998) 156–165

222 Tatsuya Akutsu et al.

4. Finch, A.M., Wilson, R.C., Hancock, E.R.: Matching Delaunay Graphs. Pattern
Recognition 30 (1997) 123–140

5. Hatada, I. et al.: A Genomic Scanning Method for Higher Order Organisms Using
Restriction Sites as Landmarks. Proc. Natl. Acad. Sci. USA. 88 (1991) 9523–9527

6. Hoffmann, F., Kriegel, K., Wenk, C.: Matching 2D Patterns of Protein Spots. In:
Proc. 14th ACM Symp. Computational Geometry (1998) 231–239

7. Irani, S., Raghavan, P.: Combinatorial and Experimental Results for Randomized
Point Matching Algorithms. In: Proc. 12th ACM Symp. Computational Geometry
(1996) 68–77

8. Kanaya, K., Ohyama, A., Akutsu, T., Fujiyama, A.: Development of Web Interface
of Image Analysis System DDGEL for 2d Gel Electrophoresis. In: Genome Informat-
ics 1998, Universal Academy Press, Tokyo (1988) 336–337

9. Kant, G.: Drawing Planar Graphs Using the Canonical Ordering. Algorithmica 16
(1996) 4–32

10. Lichtenstein, D.: Planar Formulae and Their Use. SIAM J. Computing 11 (1982)
329–343

11. Ogawa, H.: Labeled Point Pattern Matching by Delaunay Triangulation and Max-
imal Cliques. Pattern Recognition 19 (1986) 35–40

12. Takahashi, K., Nakazawa, M., Watanabe, Y., Konagaya, A.: Fully-Automated Spot
Recognition and Matching Algorithms for 2-D Gel Electrophoretogram of Genomic
DNA. In: Genome Informatics 1998, Universal Academy Press, Tokyo (1988) 161–172

Applying an Edit Distance to the Matching of

Tree Ring Sequences in Dendrochronology?

Carola Wenk

Institut für Informatik
Freie Universität Berlin

Takustr. 9, D-14195 Berlin
wenk@inf.fu-berlin.de

Abstract. In dendrochronology wood samples are dated according to
the tree rings they contain. The dating process consists of comparing the
sequence of tree ring widths in the sample to a dated master sequence.
Assuming that a tree forms exactly one ring per year a simple sliding
algorithm solves this matching task.
But sometimes a tree produces no ring or even two rings in a year.
If a sample sequence contains this kind of inconsistencies it cannot be
dated correctly by the simple sliding algorithm. We therefore introduce
a O(α2mn + α4(m + n)) algorithm for dating such a sample sequence
against an error-free master sequence, where n and m are the lengths of
the sequences. Our algorithm takes into account that the sample might
contain up to α missing or double rings and suggests possible positions for
these kind of inconsistencies. This is done by employing an edit distance
as the distance measure.

1 Introduction

1.1 Dendrochronology

The tree ring structure in wood samples is important in many research areas, for
instance in archaeology, climatology, geomorphology and glaciology. The reason
for that is that the growth of a tree and therefore its rings depend on the envi-
ronmental conditions that the tree has been exposed to, so that the tree rings
build an archive of these environmental conditions. The science that deals with
the dating of tree rings in order to answer questions related to natural history
is called dendrochronology. The name is derived from the greek words dendron
(wood), chronos (time) and logos (the science of).

A tree ring is a growth layer that the tree forms under its bark during the
vegetation period. It consists of big, thinwalled cells that are built at the begin-
ning of the growth period and of thin, thickwalled cells built at the end. The
first type of cell ensures the food supply to the shoots, whereas the other type
accounts for the stability of the stem. Since the second type of cell looks much
? Part of a research project supported by Deutsche Forschungsgemeinschaft, grant AL

253/4-2

M. Crochemore, M. Paterson (Eds.): CPM’99, LNCS 1645, pp. 223–242, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

224 Carola Wenk

darker than the first type, it is possible to visually detect the border between
two successive tree rings. In areas with an annual vegetation and winter period
a tree usually adds exactly one tree ring per year.

In dendrochronology a wood sample is characterized by the sequence of its
tree ring widths 1. Since trees growing under similar conditions (especially cli-
matic conditions like rainfall) build similar tree rings, it is possible to success-
fully compare certain tree ring sequences. In fact, the usual way of dating tree
ring sequences in dendrochronology is to compare the undated sequence to a
dated sequence. This procedure, called crossdating, is a fundamental task in
dendrochronology.

1.2 Crossdating

Assuming that the trees being considered have built exactly one ring each year,
a crossdating can be performed by sliding the sample along the master sequence
starting and ending with a certain constant minimum overlap of e.g. 50 rings. At
each position the distance (according to a predefined distance measure) between
the overlapping parts of the sequences is computed and the position yielding
the best distance is proposed as the correct dating position. The most common
distance measures are the t-value, and the so-called Gleichläufigkeitskoeffizient
(percentage of slope equivalence).

Let x = x0, . . . , xN−1 and y = y0, . . . , yN−1 be the two sequences being
compared in one step of the algorithm. Then the t-value (Student’s t) is defined
by

t = r

√
(
N − 2
1− r2

) (1)

where r is the correlation coefficient

r =

N−1∑
i=0

(xi − x̄)(yi − ȳ)√
N−1∑
i=0

(xi − x̄)2
N−1∑
i=0

(yi − ȳ)2
(2)

=
N

N−1∑
i=0

xiyi −
N−1∑
i=0

xi −
N−1∑
i=0

yi√
(N

N−1∑
i=0

x2
i − (

N−1∑
i=0

xi)2)(N
N−1∑
i=0

y2
i − (

N−1∑
i=0

yi)2)

(3)

1 Depending on the application there are also other tree ring characteristica than the
width used (see e.g. [11]), but in this article we will regard tree ring widths only.

Applying an Edit Distance to the Matching of Tree Ring Sequences 225

with the arithmetic means x̄ and ȳ. The Gleichläufigkeitskoeffizient Glk is the
percentage of slope equivalence of the two sequences,

Glk =
1

N − 1

N−2∑
i=0

χ(xi+1 − xi = yi+1 − yi) (4)

=
1

N − 1

1∑
k=−1

N−2∑
i=0

χ(xi+1 − xi = k) · χ(yi+1 − yi = k) (5)

with the characteristic function χ(a = b) =
{

1 , if a = b
0 , if a 6= b

.

A sequential computation of all distances takes θ(nm) time, where n and m
are the lengths of the master and the sample sequences, respectively. Considering
(3) a non-sequential computation of all correlation coefficients depends on the
efficient calculation of the correlation terms

∑
xiyi, since all other terms can

be computed in linear time. Note that the inner sum in (5) is also a correlation
term. Employing the Fast Fourier Transform (FFT) all such correlation terms
can be computed in time θ((n+m)log(n+m)) instead of the brute force θ(nm),
see e.g. [6],[7],[2]. Due to the discretization of the slope of the sequences the
Gleichläufigkeitskoeffizient usually gives less information than the t-value.

Since the data is very noisy it usually does not suffice to simply date the
sample sequence according to the crossing position which yields the best dis-
tance. The results of the matching algorithm are always visually checked by a
dendrochronologist.

Before the above described comparison can be made, the tree ring sequences
have to be filtered. This so-called standardization process cleans the data from
individual trends, which usually are long term trends. Thus only general trends
which occur in several tree ring sequences remain. Typically high-pass filters
like the percentage of a five-year running mean or the logarithmic difference are
used.

1.3 Missing and Double Rings

However, the assumption made above that a tree ring sequence contains exactly
one value per year is not always true. First of all mistakes during the measure-
ment of the ring widths happen, especially if the rings are very thin. Moreover,
due to bad growing conditions a tree might also not build a ring around the
whole stem or even not at all, which can result in a missing ring in the tree ring
sequence. Climatic changes can also cause a tree to build two rings a year, a
double ring.

If the sequences to be compared contain missing or double rings most match-
ing algorithms do not produce satisfying results since they do not take into
account the transposition in time which is caused by a missing or a double ring.
The usual approach to date a sample sequence which may contain inconsistencies
against a clean master sequence is to split up the sample into shorter parts and

226 Carola Wenk

to date each part on its own (either manually or using Cofecha [4]). Finally a
possible position for a ring insertion or merging is manually concluded. Cofecha
[4] is a quality control tool which checks a set of dated samples for mutual dating
consistency by splitting up each sequence into small pieces and comparing these
to the other sequences. This leads to a lot of information to be evaluated. The
information needed to deduce a possible missing ring (i.e. when the pieces to the
right of the missing ring position date all to one year later) is then available, but
a missing ring is not explicitly proposed.

2 Edit Distances in an α-Box

2.1 A Simple Edit Distance

Let A = a0, ..., an−1 and B = b0, ..., bm−1 be two standardized tree ring width
sequences, where A may contain missing or double rings (representing the sample
sequence) whereas B is known to be a clean reference sequence (representing a
part of the master sequence). In order to get a notion of how much A differs
from B we look for a transformation transforming A by inserting rings (which
compensates a missing ring) or merging two rings into one (which compensates
a double ring) into a sequence close to B. Closeness is defined by taking the
sum of the squared differences. The transformations allowed are described by
transformation sequences over the alphabet {I, M, N} where I stands for insert
M for merge and N for identity operation.

Let for example be A = 3, 2, 1, 2, 5, 3 and consider a transformation sequence
τ = MMNIIN , see Fig. 1. The transformation is performed sequentially from
left to right by merging 3 and 2 to 5 (M), merging 1 and 2 to 3 (M), not changing
5 (N), inserting a ring which is done by taking the average µ = 5+3

2 = 4 of the
two surrounding rings (I), inserting another ring in the same manner (I) and
finally not changing the last ring 3 (N).

M M N I NI

2 1 2 5

5 3 5 4

3

34

3

τ()A

τ

A

Fig. 1. An example of a sequence A, a transformation sequence τ and the
transformed sequence τ(A).

The simple edit distance Dsimp(A, B) is defined by

Dsimp(A, B) =

 min

τ∈Tn,m

m−1∑
υ=0

(τ(A)υ −Bυ)2 , if Tn,m 6= ∅

not defined , otherwise
(6)

Applying an Edit Distance to the Matching of Tree Ring Sequences 227

where Tn,m contains all transformation sequences (which we identify with a
transformation each) that transform a sequence of length n into a sequence of
length m. We call a transformation sequence which minimizes the sum optimal.
For a transformation τ ∈ Tn,m let γτ be the number of merge operations, ιτ the
number of insert operations and ντ the number of identity operations in τ . Then
from the definition of τ follows n = 2 ∗ γτ + ντ as well as m = γτ + ιτ + ντ =
n + ιτ − γτ . Making use of these properties it is easy to show that Tn,m is non-
empty if and only if n ≤ 2m. This notion of an edit distance is based on the
edit distance for strings (see [3], [12]) or on the dynamic time warping in speech
recognition (see [10], [9]) respectively.

The profit of taking the sum of the squared distances as a minimization
criterion is the existence of a recurrence which leads to an efficient computation
of the simple edit distance. Define Dsimp(i, j) := Dsimp(A[0..i− 1], B[0..j − 1])
to be the simple edit distance of the prefixes of A and B for i ≤ 2j. Then
the definition of the transformations by transformation sequences implies the
existence of the following recurrence:

Dsimp(0, 0) = 0

Dsimp(i, j) = min

Dsimp(i− 2, j − 1) + (ai−2 + ai−1 − bj−1)2,
Dsimp(i− 1, j − 1) + (ai−1 − bj−1)2,
Dsimp(i, j − 1) + (µ(i− 1)− bj−1)2

for all 0 ≤ i ≤ n, 0 ≤ j ≤ m with i ≤ 2j.

(7)

0

0

1

1

n

i

jm

Fig. 2. Matrix for the dynamic programming computation of the simple edit
distance Dsimp(A, B). The left cut-off is caused by the condition i ≤ 2j, the
right by (n− i) ≤ 2(m− j).

Although the transformation space is exponentially big a dynamic program-
ming approach allows to compute Dsimp(A, B) in θ(nm) time and space. This
is accomplished by sequentially filling an (n + 1) × (m + 1) matrix (see Fig. 2)

228 Carola Wenk

in which cell (i, j) contains the value Dsimp(i, j). The condition i ≤ 2j and the
symmetrical condition (n− i) ≤ 2(m− j) cut two corners off the matrix which
represent undefined or for the computation of Dsimp(n, m) unnecessary values,
respectively. According to (7) a value is computed out of at most three values
(see Fig. 3). The value Dsimp(A, B) = Dsimp(n, m) is placed in cell (N, M).

i-1

i-2

j

i

j-2 j-1

=̂

=̂

=̂ I

M

N

=̂

=̂

=̂ D (i,j)=D (i,j-1)+(

D (i,j)=D (i-1,j-1)+(a -) b 2

simp simp

simp simp

simp simp

D (i,j)=D (i-2,j-1)+(a + a

µ(i-1)

i-2 i-1
)2- b

i-1

- b) 2

j-1

j-1

j-1

Fig. 3. Dynamic programming computation of the simple edit distance accord-
ing to (7).

An optimal transformation can be retrieved from the filled matrix by back-
tracking the performed computation. This is done by starting in cell (n, m) and
recursively checking which of the three possible cells contributed its value to
the examined cell (either by recalculating the sums or by checking a previously
saved pointer/arrow to a cell). In this way a path of cells (or arrows, see Fig.
3) from cell (n, m) to cell (0, 0) is constructed which obviously corresponds to a
transformation sequence.

2.2 Van Deusen’s Edit Distance

The transformation space over which the simple edit distance is minimized in-
cludes in particular transformations containing many edit operations. Transfor-
mations like this correspond to paths in the computation matrix with many
non-diagonal arrows. Since a tree ring sequence usually contains only very few
missing or double rings, Van Deusen [1] reduced the transformation space by al-
lowing only those paths in the matrix which stay inside a given strip of constant
width around the diagonal starting at (0, 0); see Fig. 4.

The width of a strip is given by a parameter α which denotes the width on
each side of the diagonal. The in this way reduced transformation space contains
only transformations in which the edit operations are locally balanced. Yet there
are still transformations with many edit operations possible. For instance if the
transformation sequence alternates between a merge and an insert operation the
conforming transformation path still stays inside a strip of width 1 around the
diagonal.

Applying an Edit Distance to the Matching of Tree Ring Sequences 229

i

0

0

1

1

n

m j

Fig. 4. Van Deusen’s computation matrix with a strip of width α = 2 to each
side of the diagonal. The diagonal has been shaded.

2.3 α-Box Edit Distance

A straight forward improvement of Van Deusen’s edit distance is the following
notion which we call α-box edit distance or k-edit distance. This type of edit
distance has been proposed for strings by Sankoff and Kruskal [5]. Since the
number of edit operations contained in an optimal transformation should be
small, the idea is to regard transformations and edit distances depending on the
number of edit operations. We therefore define the k-edit distance as follows:

D(A, B, k) =

 min

τ∈Tn,m,k

m−1∑
υ=0

(τ(A)υ −Bυ)2 , if Tn,m,k 6= ∅

not defined , otherwise
(8)

where Tn,m,k is the set of all transformation sequences transforming a sequence
of length n into a sequence of length m using exactly k edit operations. Let again
γτ be the number of merge operations, ιτ the number of insert operations and
ντ the number of identity operations in τ . Then from the definition of τ follow
m = γτ + ιτ + ντ = n + ιτ − γτ and ιτ + γτ = k. It is then easy to show that
Tn,m,k is non-empty if and only if m ≥ k and m−n = k−2γ for a γ ∈ {0, . . . , k}.
We define D(i, j, k) to be the k-edit distance between the prefixes A[0..i−1] and
B[0..j − 1]. Just as in the case of the simple edit distance the k-edit distance
satisfies the following recurrence:

D(0, 0, 0) = 0

D(i, j, k) = min

D(i− 2, j − 1, k − 1) + (ai−2 + ai−1 − bj−1)2,
D(i− 1, j − 1, k) + (ai−1 − bj−1)2,
D(i, j − 1, k − 1) + (µ(i− 1)− bj−1)2

 (9)

230 Carola Wenk

for all 0 ≤ i ≤ n, 0 ≤ j ≤ m
with j ≥ k and j − i = k − 2γ for a γ ∈ {0, . . . , k}.

The α-edit distance can be computed in a dynamic programming manner in
θ(α2 min(n, m)) time and space. The storage required is a part of an (α + 1)×
(n+1)×(m+1) box (see Fig. 6) in which cell (i, j, k) contains the value D(i, j, k).
Due to the condition j − i = k − 2γ for a γ ∈ {0, . . . , k} the defined values of
D(i, j, k) form diagonals inside the matrix (see Fig. 5 and Fig. 6). For each
γ ∈ {0, . . . , k} there is one corresponding diagonal in level k. All edit distances
in one diagonal contain the same number of merge and insert operations as
shown in Fig. 6.

jj-2 j-1

jj-2 j-1

i-1
i-2

i-1
i-2

i

i
level k

level k-1

Fig. 5. Dynamic programming computation of the k-edit distance according to
(9). A projection of the two levels onto one level results in the matrix shown in
Fig. 3.

According to (9) the value D(i, j, k) is computed out of at most three values
(see Fig. 5) whereby a change of the k-level is performed only in the case of
an edit operation (merge or insert). The computation is carried out by filling
the diagonals level by level, thereby touching each cell only a constant number
of times, until finally filling cell (n, m, α). Note that this computation box (α-
box) contains especially all k-edit distances between A and B with 0 ≤ k ≤ α.
In each k-level there are at most k + 1 diagonals and each diagonal contains
at most min(n, m) + 1 cells. Therefore there are (min(n, m) + 1)

∑α
k=0(k + 1)

= O(α2 min(n, m)) cells to be filled.
Often an optimal transformation contains two opposite edit operations (in-

sert/merge or merge/insert) almost successively. A pair of edit operations like
this has no global effect on the edited sequence, but only a local effect during
the short time interval between the two edit operations. Given a threshold (e.g.
10) for the minimum number of years between two opposite edit operations, 10
cells on the diagonal after an edit operation are marked so that the opposite edit
operation is not allowed when calculating the edit distances for these cells.

Applying an Edit Distance to the Matching of Tree Ring Sequences 231

3

2

0

1

2
0

1
3

4

k

i

75 6210 3 4 j

j0 1 2 3 4 5 6 7

i
j-i0

level k=0

0

1

2

3

4

0 γ
0 M

0 I

j70 1 2 3 4 5 6

i
γ

j-i

level k=2

0

1

3

4

2

1 02

0 M

2 I

1 M

1 I
2 M
0 I

0 2-2

j70 1 2 3 4 5 6

j-i1-1

level k=1

0

1

2

3

4

i
01 γ

0 M

1 I

1 M
0 I

j70 1 2 3 4 5 6

i
j-i

γ

level k=3

0

1

2

3

4

1 02

0 M

3 I
1 M

2 I

2 M
1 I

1 3-1

Fig. 6. Dynamic programming box needed for the computation of the 3-edit
distance between two sequences of length 4 and 7. The defined cells have been
shaded. The number of merge (M) and insert (I) operations corresponding to
the diagonals have been written next to each diagonal.

232 Carola Wenk

Although theoretically there can be several optimal transformations associ-
ated with one edit distance (this corresponds to more than one arrow leaving
one cell), we always choose exactly one optimal transformation per edit distance
(or cell), since due to the real valued input data an exact equality of the sums
is unlikely. Then instead of storing in each cell a pointer to the cell which con-
tributed its value to the sum, we collapse a path of diagonal pointers to one
pointer (shortcut) directly pointing to the position where the transformation
path changes the k-level. That way a traceback of the transformation path of a
cell in level k needs θ(k) time and a transformation can be saved for later use in
θ(k) space.

3 Crossdating Employing k-Edit Distances

Crossdating is usually performed by sliding the sample sequence across the mas-
ter sequence and computing distances between the overlapping parts at each
crossing position. The same is done in the algorithm presented here using the k-
edit distance and therefore taking into account possible missing or double rings.
The parameter α must be specified by the user in advance. As a postprocessing
step a new heuristic is applied in order to further restrict the number of edit
operations being contained in a transformation sequence.

3.1 Simple Crossdating by Sample Sliding

Let us take a closer look at the α-box which has to be filled in order to compute
the α-edit distance between the sample and a specific (coherent) piece of the
master sequence. Assume the master piece starts at year y. Then the last row of
each k-level, 0 ≤ k ≤ α, contains all k-edit distances between the sample and all
prefixes of the master piece, while each last column contains all k-edit distances
between the master piece and all prefixes of the sample. If the master piece is a
suffix of the master sequence (or if its length is the length of the sample plus α),
the α-box contains all possible k-edit distances between the sample and those
master pieces which date the sample to year y.

When we slide the sample across the master, at each position computing an
α-box for the sample and the suffix of the master sequence, especially the last
row and last column of each level, we obtain all information we need to date
the sample: The last rows contain results comparing the sample to the master
sequence at different offsets, where each offset is represented in one α-box. The
last columns are interesting only in the case that the sample partly overlaps the
end of the master sequence, so that a prefix of the sample must be considered.
In the case where the master piece is longer than the sample, the last column
degenerates to one cell which is already part of the last row.

After having computed all edit distances in the last rows and last columns
of each level in each α-box, we need to compare them in order to find an ac-
ceptible dating. A simple comparison is not meaningful, since the number of
terms adding up to a k-edit distance in (8) varies according to the number and

Applying an Edit Distance to the Matching of Tree Ring Sequences 233

kind of edit operations performed and also according to a partial overlap of the
sequences. So we need to normalize the edit distance by dividing by the number
of added terms which is the length of the transformed sample sequence. How-
ever, a simple comparison of all normalized edit distances (which means sorting
them and taking the smallest as the best) proved not to be useful. The reason
for that is that the normalization removes the information about the length of
the sequence (i.e. the number of summands), so that shorter sequences cause a
better edit distance more easily than longer sequences do.

Since the t-value is length-dependant and a commonly used distance measure
in dendrochronology (which dendrochronologists are familiar with) we take the
t-value between the transformed sequence and the master piece as the judging
criterion. The correlation coefficient can be implicitly calculated during the box
filling process at no extra cost asymptotically. So we sort all t-values of the last
row and last column of each box and output the biggest t-values, each together
with an optimal transformation (i.e. the positions of possible missing and double
rings) and the corresponding dating proposal (offset) to the user.

3.2 Heuristic Postprocessing of the Results

The algorithm described so far simply sorts all results in the end without taking
the number of edit operations into account. Therefore the best results will often
contain too many edit operations. A standard approach to that problem is to
penalize edit operations either by a multiplicative or an additive term. Unfor-
tunately this also affects edit operations at correct positions. Indeed, it seems
that in respect to penalties incorrect edit operations are somehow more robust.
We therefore decided not to penalize the edit operations, but we compare the
obtained results in a heuristic postprocessing step. We store all edit distances
of all last rows and last columns of each level of each α-box in an overall result
structure. Then usually a good dating appears several times among the best
results. Those similar results then differ only in some edit operations, whereby
they usually share some edit operations (the correct ones) and include some more
edit operations which improve the edit distance a little but which are incorrect.

The heuristic we developed then tries in two phases to identify some possible
redundant results and deletes those from the overall result structure. For each
edit distance result (that is an edit distance in the last row or column of a box-
level) we do a redundancy check within the box plus another check concerning
some neighboring boxes.

In the first check phase it is tested, if the normalized distance is significantly
smaller than each normalized edit distance associated with each last cell on the
diagonals on the transformation path. This captures the idea that one good
match often appears several times, where the different occurences share some
correct edit operations and include some more incorrect edit operations. An
additional edit operation should therefore be admitted only if it improves (hence
decreases) the edit distance significantly. A normalized edit distance e is said to
be significantly smaller than the normalized edit distance ecomp, if e/ecomp < 0.9.

234 Carola Wenk

If an edit distance did not pass this check it is deleted from the overall result
structure and not compared to other edit distances anymore.

The second check phase is established to eliminate those inter-box redundant
results, which date the sequence incorrectly by a few years according to super-
fluous edit operations at the beginning of the transformation sequence. Call the
subsequence of the transformation sequence which includes only the insert and
merge operations an edit sequence. For every prefix of the edit sequence the
time transposition it induces is calculated (a merge operation corresponds to a
transposition one year to the left, an insert operation one year to the right).
The α-box at the transposed position is checked if it contains an edit distance
ecomp with an edit sequence equal to the remaining suffix of the edit sequence
being checked. Now the normalized edit distance e whose edit sequence probably
contains an unnecessary prefix is deleted if e/ecomp ≥ 0.9.

3.3 Crossdating Algorithm

Figure 7 shows the crossdating algorithm. The standardization can be done in
θ(m + n) time and space. The number of α-boxes to be filled is O(n + m), and
since we need θ(α2 min(n, m)) time to fill one α-box (see Par. 2.3), we can fill
them all in O(α2mn) time. We do not need to store all α-boxes since we need
only the last row and the last column of each level of every α-box. There is one

Crossdating algorithm:

Standardization of the master and the sample sequence
For all overlap positions of the sample in the master

Fill α-box
For all cells in the last row and last column of each level

Normalize edit distance
Compute optimal transformation
Redundancy check 1: Check with normalized edit distances on

transformation path.
If edit distance is not redundant:

Store the distance, the t-value, the transformation and the offset
number in an overall result structure.

Redundancy check 2: Remove inter-box-redundant results.
Sort all results in the result structure by decreasing t-value.
Display the best results (those with the highest t-values).

Fig. 7. Crossdating algorithm

last row or last column entry for each diagonal, so that we only have to count
the diagonals of which there are at most (k + 1) in every k-level. So we have
O((m + n)

∑α
k=0(k + 1)) = O(α2(m + n)) edit distances to be stored. But for

each edit distance we also store its corresponding optimal transformation which

Applying an Edit Distance to the Matching of Tree Ring Sequences 235

needs θ(k) space, so that the space which is altogether needed to store all results
sums up to O((m + n)(1 +

∑α
k=1(k + 1)k)) = O(α3(m + n)). Additionally there

is O(α2 min(n, m)) space for one α-box needed to fill a box.
The first redundancy check needs θ(k) time for each edit distance which sums

up to O((m + n)(1 +
∑α

k=1(k + 1)k)) = O(α3(m + n)) altogether. The second
redundancy check needsO(k2) time each, hence togetherO((m+n)(1+

∑α
k=1(k+

1)k2)) = O(α4(m + n)). For the redundancy checks there is asymptotically no
more space needed. The sorting of all results takes O(α2(m + n) log(α2(m +
n))) time. (Since we are interested in some of the best results only we actually
do not have to sort all results, but sorting does not affect the asymptotical
running time.) So altogether the algorithm needs O(α2mn + α4(m + n)) time
and O(α3(m + n)) space.

4 Test Results

4.1 Implementation

The crossdating algorithm has been implemented in C++ in a command-line-
oriented Unix environment. A program executable can be obtained from the
author.

In practice a crossdating program outputs several good matchings (e.g. the
best 5 or 10), and the dendrochronologist visually checks if one of them represents
the correct dating. Likewise the program we have implemented allows the user
to subsequently evaluate the results according to different criteria. That is, once
the results have been computed, the best results in a certain time interval, those
having a bigger minimum overlap or those for a lower value for α can be queried.
The computation time of such modified result queries by scanning the list of the
sorted results is linear in the number of results, thus O(α2(m + n)). Note that
our program especially computes all those t-values that are computed during
the simple sliding algorithm. They can be accessed by querying the results for
α = 0. Our program therefore generalizes the simple sliding algorithm.

Several tests have been performed which we will present in the following
three paragraphs: Tests with randomly generated missing or double rings, tests
on data containing real missing rings and finally runtime tests. However, the
automatized tests do not cover the interactive program properties.

4.2 Randomly Generated Disturbances

The program was tested on collections of already dated samples. In each col-
lection one sample was randomly disturbed by deleting or splitting up some
values, and this sample was then tried to date against the mean sequence of the
remaining sequences in the collection.

Tests were performed mainly for the parameter values α = 2, a minimum
overlap of 50 and a redundancy threshold of 10 (see end of Par. 2.3). For each
sample a random disturbance has been carried out 5 times. Some test results

236 Carola Wenk

are shown in Tables 1, 2, 3, 4 and 5. Column date shows the percentage of those
data sets in the collection for which the correct dating has been found. Date &
edit shows the percentage of those data sets for which the correct dating and the
correct type of editation in an interval of radius 10 around the correct position
have been found. The column k shows the average number of proposed edit
operations for those results for which the correct date and editation has been
found. For standardization the percentage of a five-year running mean (also
called floating average; in the following tables abbreviated with float-ave) or the
difference of logarithms (abbreviated with log) were used.

Table 1. Test results without manipulation of the data.

date date k date date k

α = 0 α = 2 α = 0 α = 2

kieftest 96 % 80 % 0.3 96 % 86 % 0.5

germ001 98 % 80 % 0.2 98 % 83 % 0.2

germ003 100 % 94 % 0.1 100 % 88 % 0.1

germ004 96 % 79 % 0.7 96 % 88 % 0.9

germ006 100 % 88 % 0.4 100 % 94 % 0.0

cana030 94 % 72 % 0.3 94 % 89 % 0.0

az052 100 % 80 % 0.1 100 % 80 % 0.4

az526 100 % 100 % 0.1 100 % 95 % 0.8

SET01 94 % 69 % 0.7 94 % 63 % 0.5

SET02 96 % 71 % 0.8 96 % 63 % 0.5

oh004 100 % 72 % 0.1 100 % 79 % 0.1

swed302 98 % 82 % 0.0 98 % 89 % 0.1

Float-ave preprocessing Log preprocessing

The data used was supplied by the following sources: The kieftest data is
tree ring width data from a German pine, which was supplied by Deutsches
Archäologisches Institut2. The SET01 and SET02 data are files which come with
the crossdating program TSAP [8] (which does not search for missing or double
rings during the crossdating). The other data was taken from the ITRDB3, where
the germ data sets are from German oaks, the cana data from Canadian white
spruce, the az data from Arizona where az526 is ponderosa pine, the oh data
from white oak from Ohio and the swed data from scotch pine from Sweden.

Table 1 shows how many samples of each tested collection the algorithm dates
correctly when no random disturbances have been performed. With α = 0 this
equals a simple sliding algorithm concerning t-values which dates 97% samples
correctly on the average4. With α = 2 the percentage of correct datings decreases
2 We like to thank Dr. K.-U. Heußner from Deutsches Archäologisches Institut,

Eurasien-Abteilung, Im Dol 2-6, D-14195 Berlin.
3 The International Tree-Ring Data Bank (ITRDB) is located at

http://www.ngdc.noaa.gov/paleo/treering.html.
4 On the average means here averaged over the tested collections shown in the tables.

Applying an Edit Distance to the Matching of Tree Ring Sequences 237

by up to 33% (on the average only by 15% though), and the number of mistakenly
found edit operations increases by up to 0.9 (on the average only by 0.4).

To see how our algorithm performs on sequences that contain missing rings,
take a look at Table 2 which shows test results for the germ001 data with one
randomly deleted element and for different values of α. Setting α = 0 (again,
this equals the simple sliding algorithm) the correct date is found in only 51% or
41% of the cases (for floating-average or log preprocessing, respectively). When
allowing the algorithm to perform some editations by choosing α slightly greater
than 1, the chance for a correct dating increases dramatically. But the farther α
is away from the correct number of edit operations needed, the more false edit
operations are performed and the more the chance for a correct date decreases.
But since there are not many double or missing rings expected in a tree ring
sequence, a small value of α (e.g. 2 or 3) should be sufficient most of the times.

Table 2. Test results concerning the germ001 data with a random deletion of
one sample element and different values for α.

α date date & k date date & k
edit edit

0 51 % 0 % 0.0 41 % 0 % 0.0

1 94 % 91 % 1.0 95 % 91 % 1.0

2 93 % 89 % 1.0 92 % 87 % 1.0

3 81 % 77 % 1.4 84 % 76 % 1.4

4 82 % 78 % 1.5 84 % 76 % 1.4

5 85 % 78 % 2.2 85 % 76 % 1.9

Float-ave preprocessing Log preprocessing

Tables 3, 4 and 5 show test results for different data collections with one
random deletion, one random splitting and two random consecutive deletions.
Although the percentages for a correct dating with a correct editation vary
from 38% to 95%, the percentages are usually extremely higher than those for
a dating with α = 0. However, as can be seen in the column date for α > 0,
the program finds the correct date more often than the correct date plus the
correct editation, because it proposes some wrong, additional or not enough edit
operations. In fact, if the program finds the correct date, it usually proposes most
of the editations at an almost correct position and skips necessary editations only
if they are too close to the beginning or the end of the sequence. In any case
the results of the program give more information to the user about possible
missing or double rings than the standard crossdating methods do. Concerning
two consecutive deletions, Table 5 shows that if two missing rings have been
found, they lie only about 2 or 3 years apart.

238 Carola Wenk

Table 3. Test results with a random deletion of one sample element.

date date date & k date date date & k
edit edit

α = 0 α = 2 α = 0 α = 2

kieftest 24 % 73 % 67 % 1.2 28 % 76 % 69 % 1.2

germ001 51 % 92 % 89 % 1.0 41 % 92 % 87 % 1.0

germ003 58 % 94 % 83 % 1.0 53 % 92 % 81 % 1.0

germ004 47 % 84 % 76 % 1.2 50 % 87 % 78 % 1.2

germ006 21 % 91 % 85 % 1.0 26 % 88 % 81 % 1.0

cana030 27 % 72 % 69 % 1.0 30 % 90 % 80 % 1.0

az052 44 % 97 % 94 % 1.0 42 % 95 % 95 % 1.0

az526 38 % 91 % 79 % 1.0 35 % 96 % 83 % 1.1

SET01 34 % 60 % 54 % 1.0 25 % 59 % 49 % 1.1

SET02 37 % 54 % 48 % 1.2 33 % 59 % 53 % 1.2

oh004 47 % 85 % 83 % 1.0 42 % 81 % 80 % 1.0

swed302 43 % 83 % 72 % 1.0 39 % 89 % 79 % 1.0

Float-ave preprocessing Log preprocessing

Table 4. Test results with a random splitting of one sample element.

date date date & k date date date & k
edit edit

α = 0 α = 2 α = 0 α = 2

kieftest 22 % 75 % 63 % 1.2 28 % 75 % 58 % 1.2

germ001 52 % 92 % 88 % 1.0 42 % 93 % 88 % 1.0

germ003 56 % 94 % 83 % 1.0 52 % 92 % 79 % 1.0

germ004 48 % 88 % 78 % 1.1 50 % 88 % 74 % 1.1

germ006 19 % 90 % 81 % 1.0 26 % 88 % 85 % 1.0

cana030 29 % 72 % 66 % 1.0 34 % 82 % 71 % 1.0

az052 47 % 98 % 88 % 1.0 42 % 98 % 80 % 1.0

az526 36 % 83 % 74 % 1.0 34 % 85 % 66 % 1.2

SET01 18 % 60 % 53 % 1.0 16 % 59 % 56 % 1.1

SET02 28 % 57 % 48 % 1.1 32 % 59 % 52 % 1.1

oh004 47 % 87 % 85 % 1.0 43 % 85 % 83 % 1.0

swed302 34 % 74 % 67 % 1.1 35 % 79 % 69 % 1.0

Float-ave preprocessing Log preprocessing

4.3 Real Missing Rings

In this paragraph we present results from tests performed on data containing real
missing rings. Test data like this is widely available because many dendrochro-
nologists mark a missing ring as a ring with width 0. Test data for double rings
is rather hard to find because dendrochronologists usually do not record the
occurence of double rings. The reason for that is that there is a chance to visu-
ally identify a double ring on the wood (e.g. after some more preparation of the

Applying an Edit Distance to the Matching of Tree Ring Sequences 239

Table 5. Test results with a random deletion of two consecutive sample ele-
ments.

date date date & k distance date date date & k distance
edit betw. edits edit betw. edits

α = 0 α = 3 α = 0 α = 3

kieftest 13 % 67 % 55 % 2.2 2.7 21 % 73 % 56 % 2.1 2.5

germ001 56 % 91 % 85 % 2.0 2.2 54 % 89 % 78 % 2.0 2.2

germ003 54 % 91 % 74 % 2.0 3.5 58 % 89 % 68 % 2.0 3.5

germ004 38 % 80 % 79 % 2.1 3.1 49 % 85 % 69 % 2.1 2.7

germ006 16 % 85 % 75 % 2.0 2.5 21 % 84 % 66 % 2.0 2.5

cana030 20 % 71 % 66 % 2.0 2.8 34 % 86 % 73 % 2.0 3.0

az052 44 % 94 % 91 % 2.0 1.8 42 % 91 % 88 % 2.0 1.7

az526 44 % 89 % 79 % 2.0 2.2 48 % 92 % 78 % 2.1 2.3

SET01 24 % 55 % 49 % 2.0 2.8 34 % 55 % 39 % 2.2 3.1

SET02 30 % 51 % 39 % 2.1 3.1 38 % 52 % 38 % 2.1 2.4

oh004 45 % 79 % 76 % 2.0 2.3 49 % 76 % 72 % 2.0 2.2

swed302 34 % 77 % 65 % 2.0 2.7 48 % 81 % 65 % 2.0 2.6

Float-ave preprocessing Log preprocessing

wood or using a better microscope), whereas for a missing ring there is not. We
therefore restricted the tests on data with real inconsistencies to data containing
missing rings.

Table 6. Test results for data with real missing rings; α = 4.

of ave. # of date date & date date &
samples miss. rings edit edit

wa067 19 2.42 16 ∼= 84% 12 ∼= 63% 17 ∼= 89% 14 ∼= 74%

wa069 13 1.08 12 ∼= 92% 9 ∼= 69% 13 ∼= 100% 10 ∼= 77%

wa072 19 2.32 16 ∼= 84% 13 ∼= 68% 16 ∼= 84% 13 ∼= 68%

wa079 23 2.22 17 ∼= 74% 15 ∼= 65% 18 ∼= 78% 17 ∼= 74%

breclav 7 1.0 7 ∼= 100% 5 ∼= 71% 7 ∼= 100% 6 ∼= 86%

chin04 13 2.92 12 ∼= 92% 9 ∼= 69% 13 ∼= 100% 11 ∼= 85%

az052 6 3.33 5 ∼= 83% 4 ∼= 67% 5 ∼= 83% 4 ∼= 67%

az526 14 3.71 13 ∼= 93% 6 ∼= 43% 13 ∼= 93% 7 ∼= 50%

Float-ave preprocessing Log preprocessing

Table 6 shows test results for collections of samples where some samples
contain missing rings. During the tests α has been chosen to be 4. The breclav
data was supplied by Deutsches Archäologisches Institut, the others are available
at the ITRDB. The wa data is from a subalpine larch from Washington State,
the chin data is Armand’s pine from China, and the az data is from Arizona,
as mentioned above. The column # of samples contains the number of samples
in the collection that contain missing rings. The ave. # of miss. rings column

240 Carola Wenk

shows the average number of missing rings contained in the samples. The data
& edit column contains the number of samples (and also the percentage relative
to the # of samples) that the algorithm dates correctly with the correct number
and position (with a tolerance of 10) of insertions. The master sequences to date
against are built out of those samples in each collection that do not contain
missing rings.

4.4 Runtime Tests

The crossdating algorithm has been tested on a Sparc Ultra 1 machine. The
runtime the program needs for fixed α = 2 is illustrated in Fig. 8, and for a
fixed sample length n = 300 in Fig. 9. For a typical input consisting of a sample
of length n = 300, a master of length m = 1000 and α = 2 the program needs
about 13 seconds.

0

10

20

30

40

50

60

70

80

90

0 200 400 600 800 1000 1200 1400 1600 1800 2000

ru
nt

im
e

in
 s

ec
on

ds

m

alpha=2

n=300
n=400
n=500
n=600
n=700
n=800
n=900

n=1000

Fig. 8. Runtime tests with α = 2 and n and m the lengths of the sample and
master sequence, respectively.

5 Implementation and Conclusions

We investigated the problem of matching tree ring width sequences (crossdating)
which is stated in dendrochronology. Assuming that a tree forms exactly one
ring each year the matching can be performed by an easy θ(mn) algorithm.
We presented a O(α2mn + α4(m + n)) crossdating algorithm which takes the

Applying an Edit Distance to the Matching of Tree Ring Sequences 241

0

10

20

30

40

50

60

70

80

0 200 400 600 800 1000 1200 1400 1600 1800 2000

ru
nt

im
e

in
 s

ec
on

ds

m

n=300

alpha=2
alpha=3
alpha=4
alpha=5

Fig. 9. Runtime tests with n = 300 fixed, where n and m are the lengths of the
sample and master sequence, respectively.

possibility of missing and double rings into account by employing an edit distance
as a distance measure.

The algorithm has been implemented and tested. The tests show that the
dating quality of the algorithm varies depending strongly on the input data. It
is best when α equals the number of inconsistencies to be found. It is therefore
not possible to date a tree ring sequence according solely to the first dating
proposition of the algorithm. However, in the usual dating process results of an
automatic matching are taken as dating propositions only and are always visually
verified by a dendrochronologist. Since our program allows the evaluation of the
computed results for some different parameter settings, e.g. for a lower value for
α, in rather fast O(α2(m + n)) time, and it usually offers some good datings,
the program should be eligible to serve as an additional dating tool searching
for missing and double rings.

For further research it would be interesting to investigate whether it is pos-
sible to compare several tree ring sequences at once in order to produce a mean
sequence (master sequence, chronology). The question could also be raised as
to whether similar matching techniques based on the edit distance can be ap-
plied to other environmental archives like sea or glacier sediments, where certain
environmental events produce different distortions of the underlying sequences.

References

[1] Paul C. Van Deusen. A dynamic program for cross-dating tree rings. Canadian
Journal of Forest Research, 20:200–205, 1989.

242 Carola Wenk

[2] Douglas F. Elliott and K. Ramamohan Rao. Fast Transforms - Algorithms, Anal-
yses, Applications. Academic Press, 1982.

[3] Dan Gusfield. Algorithms on Strings, Trees and Sequences. Cambridge University
Press, 1997.

[4] Richard L. Holmes. Computer-assisted quality control in tree-ring dating and
measurement. Tree-Ring Bulletin, 43:69–75, 1983.

[5] Joseph B. Kruskal and David Sankoff. An anthology of algorithms and concepts
for sequence comparison. In David Sankoff and Joseph B. Kruskal, editors, Time
Warps, String Edits, and Mocromolecules: The Theory and Practice of Sequence
Comparison, chapter 10. Addison-Wesley Publishing Company, 1983.

[6] H.J. Nussbaumer. Fast Fourier Transform and Convolution Algorithms. Springer
Verlag, 1981.

[7] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flan-
nery. Numerical Recipes in C. Cambridge University Press, 2. edition, 1992.

[8] Frank Rinn. TSAP Reference Manual. Heidelberg.
http://ourworld.compuserve.com/homepages/frankrinn/.

[9] Hiroaki Sakoe and Seibi Chiba. Dynamic programming algorithm optimization
for spoken word recognition. IEEE Transactions on Acoustics, Speech, and Signal
Processing, ASSP-26(1):43–49, 1978.

[10] David Sankoff and Joseph B. Kruskal, editors. Time Warps, String Edits, and
Mocromolecules: The Theory and Practice of Sequence Comparison. Addison-
Wesley Publishing Company, 1983.

[11] F.H. Schweingruber. Trees and Wood in Dendrochronology. Springer-Verlag, 1993.
[12] Graham A. Stephen. String Searching Algorithms. World Scientific, 1994.
[13] Carola Wenk. Algorithmen für das Crossdating in der Dendrochronologie. Mas-

ter’s thesis, Freie Universität Berlin, Institut für Informatik, 1997.

Fast Multi-dimensional

Approximate Pattern Matching?

Gonzalo Navarro and Ricardo Baeza-Yates

Dept. of Computer Science, University of Chile
Blanco Encalada 2120 - Santiago - Chile
{gnavarro,rbaeza}@dcc.uchile.cl

Abstract. We address the problem of approximate string matching in
d dimensions, that is, to find a pattern of size md in a text of size nd

with at most k < md errors (substitutions, insertions and deletions
along any dimension). We use a novel and very flexible error model,
for which there exists only an algorithm to evaluate the similarity be-
tween two elements in two dimensions at O(m4) time. We extend the
algorithm to d dimensions, at O(d!m2d) time and O(d!m2d−1) space. We
also give the first search algorithm for such model, which is O(d!mdnd)
time and O(d!mdnd−1) space. We show how to reduce the space cost
to O(d!3dm2d−1) with little time penalty. Finally, we present the first
sublinear-time (on average) searching algorithm (i.e. not all text cells are
inspected), which is O(knd/md−1) for k < (m/(d(logσ m− logσ d)))d−1,
where σ is the alphabet size. After that error level the filter still re-
mains better than dynamic programming for k ≤ md−1/(d(logσ m −
logσ d))(d−1)/d. These are the first search algorithms for the problem. As
side-effects we extend to d dimensions an already proposed algorithm for
two-dimensional exact string matching, and we obtain a sublinear-time
filter to search in d dimensions allowing k mismatches.

1 Introduction

Approximate pattern matching is the problem of finding a pattern in a text
allowing errors (insertions, deletions, substitutions) of characters. A number of
important problems related to string processing lead to algorithms for approx-
imate string matching: text searching, pattern recognition, computational biol-
ogy, audio processing, etc. Two dimensional pattern matching with errors has
applications, for instance, in computer vision (i.e. searching a subimage inside
a large image). In three dimensions, our algorithms may be useful for searching
allowing errors in video data (where the time would be the third dimension) or
in some types of medical data (e.g. MRI brain scans).

For one dimension this problem is well-known, and is modeled using the
edit distance. The edit distance between two strings a and b, ed(a, b), is defined
as the minimum number of edit operations that must be carried out to make

? Supported in part by Fondecyt grant 1-990627.

M. Crochemore, M. Paterson (Eds.): CPM’99, LNCS 1645, pp. 243–257, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

244 Gonzalo Navarro and Ricardo Baeza-Yates

them equal. The allowed operations are insertion, deletion and substitution of
characters in a or b. The problem of approximate string matching is defined as
follows: given a text of length n, and a pattern of length m, both being sequences
over an alphabet Σ of size σ, find all segments (or “occurrences”) in text whose
edit distance to pattern is at most k, where 0 < k < m. The classical solution is
O(mn) time and involves dynamic programming [20].

Krithivasan and Sitalakshmi (KS) [17] proposed a simple extension to two
dimensions. Given two images of the same size, the edit distance is the sum of the
edit distance of the corresponding row images. This definition is justified when
the images are transmitted row by row and there are not too many communica-
tion errors (e.g. photocopy images, where most errors come from the mechanical
traction mechanism along one dimension only, or images transmitted by fax),
but it is not appropriate otherwise. Using this model they define an approximate
search problem where a subimage of size m ×m is searched into a large image
of size n × n, which they solve in O(m2n2) time using a generalization of the
classical one-dimensional algorithm.

In [5], Baeza-Yates (BY) defined a more general extension (there called RC),
where the errors can occur along rows or columns at any time. This model is
much more robust and useful for more applications. We are interested in this
general model in this work. Figure 1 gives an example.

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

������
������
������
������
������

������
������
������
������
������

General (BY)Rows (KS)

Fig. 1. Alternative error models.

Although in [5] they give an O(m4) time algorithm to compute the edit
distance among two images of size m × m, they do not give any algorithm to
search a subimage inside a larger image allowing errors.

In this work, we first generalize the edit distance algorithm to d dimen-
sions with complexity O(d!m2d). We then give an O(d!mdnd) time algorithm for
the search problem, matching the same complexity of the simpler KS model
in two dimensions, and show how to reduce the space requirements so that
they depend only on the pattern size. We also give a new filtering algorithm
that allows to quickly discard large parts of the text that cannot contain a

Fast Multi-dimensional Approximate Pattern Matching 245

match. This algorithm searches the pattern in average time O(knd/md−1) for
k < (m/(d(logσ m− logσ d)))d−1, where σ is the alphabet size. After that error
level the filter changes its cost but remains better than dynamic programming for
k ≤ md−1/(d(logσ m − logσ d))(d−1)/d. These are the first searching algorithms
for this problem.

Two side-effects are obtained as well. First, we generalize to d dimensions
and analyze a previously proposed algorithm to search in two dimensions not
allowing errors. Second, we obtain a filter to search a pattern in d dimensions
allowing up to k character substitutions.

2 Previous Work

The classical dynamic programming algorithm [20] to search a pattern in a text
allowing errors uses dynamic programming and is O(mn) time and O(m) space.

This solution was later improved by a number of algorithms, which we do not
cover here. The only one of interest to this work is a filtering algorithm [21, 8, 7].
It states that if a pattern is cut in k + 1 pieces, then any occurrence with up to
k errors must contain one of the pieces unchanged. This is obvious since k errors
cannot alter the k + 1 pieces given the edit operations that we consider (which
cannot alter two pieces at the same time). The algorithm simply scans the text
using a multipattern exact search algorithm for all the pieces. Each time a piece
is found, it uses dynamic programming over an area of length m + 2k where the
approximate occurrence can be found.

The multipattern search can be carried out in O(n) worst-case search time by
using an Aho-Corasick machine [1], or in O(n/m) best-case time using Commentz-
Walter [12] or another Boyer-Moore type algorithm adapted to multipattern
search. The total cost of verifications keeps below O(n) if k/m ≤ 1/(3 logσ m).

Two dimensional string matching was first considered by Bird and Baker
[11, 10], who obtain O(n2) worst-case time. Good average results are presented
by Zhu and Takaoka in [22]. The best average case result is due to Baeza-Yates
and Régnier [9], who obtain O(n2/m) time on average and O(n2) in the worst
case.

The case of two dimensional approximate string matching usually consid-
ers only substitutions for rectangular patterns, which is much simpler than the
general case with insertions and deletions. For substitutions, the pattern shape
matches the same shape in the text (e.g. if the pattern is a rectangle, it matches
a rectangle of the same size in the text). For insertions and deletions, instead,
rows and/or columns of the pattern can match pieces of the text of different
length. Under the substitutions model, one of the best results on the worst case
is due to Amir and Landau [4], which achieves O((k + log σ)n2) time but uses
O(n2) space. A similar algorithm is presented in [13]. Ranka and Heywood solve
the same problem in O((k+m)n2) time and O(kn) space. Amir and Landau also
present a different algorithm running in O(n2 log n log log n log m) time. On aver-
age, the best algorithm is due to Karkkäinen and Ukkonen [15], with its analysis
and space usage improved by Park [19]. The expected time is O(n2k/m2 logσ m)

246 Gonzalo Navarro and Ricardo Baeza-Yates

for k < m2/(4 logσ m) using O(m2) space (O(k) space on average). This time
result is optimal for the expected case.

Krithivasan and Sitalakshmi (KS) [17] defined the edit distance in two di-
mensions as the sum of the edit distance of the corresponding row images. Using
this model they search a subimage of size m × m into a large image of size
n × n, in O(m2n2) time using a generalization of the classical one-dimensional
algorithm. Krithivasan [16] presents for the same model an O(m(k + log m)n2)
algorithm that uses O(mn) space. Amir and Landau [4] give an O(k2n2) worst
case time algorithm using O(n2) space. Amir and Farach [3] also considered
non-rectangular patterns achieving O(k(k +

√
m log m

√
k log k)n2) time.

In [6] we use the same model and improve the expected case to O(n2k logσ m/
m2) on average for k < m(m + 1)/(5 logσ m), using O(m2) space. This time
matches the optimal result allowing only substitutions, and is also optimal [15],
being the restriction on k only a bit stricter. For higher error levels, [6] presents
an algorithm with time complexity O(n2k/(

√
σ log n)), which works for k <

m(m + 1)(1− e/
√

σ). It is also shown that this limit on k cannot be improved.
In [5], Baeza-Yates defined more general models, where the errors can occur

along rows or columns. Three distances R, C and L are defined, and for the first
two it is shown that the filters of [6] can be applied to obtain the same complexity
and slightly reduced tolerance to errors, i.e. k < m(m + 1)/(7 logσ m). A fourth
model defined in [5] is called RC, which generalizes R and C since the errors
can occur along rows or columns at any time. This model is much more robust
and useful for more applications, and is the one we use in this work. We cover
this model in detail in the next section.

3 Multidimensional Approximate Searching

The classical dynamic programming algorithm [18] to compute the edit distance
between two one-dimensional strings A and B of length m1 and m2 computes
a matrix C0..m1,0..m2. The value Ci,j holds the edit distance between A1..i and
B1..j . The construction algorithm is as follows

Ci,0 ← i , C0,j ← j

Ci,j ← if Ai = Bj then Ci−1,j−1 else 1 + min(Ci−1,j−1, Ci−1,j , Ci,j−1)

and the distance ed(A, B) is the final value of Cm1,m2 . The rationale of the
formula is that if Ai = Bj then the cost to convert A1..i into B1..j is that of
converting A1..i−1 into B1..j−1. Otherwise we have to make one error and select
among three choices: (a) convert A1..i−1 into B1..j−1 and replace Ai by Bj , (b)
convert A1..i−1 into B1..j and delete Ai, and (c) convert A1..i into B1..j−1 and
insert Bj .

This algorithm takes O(m1m2) space and time. It is easily adapted to search
a pattern P in a text T allowing up to k errors [20]. In this case we want to
report all the text positions j such that a suffix of T1..j matches P with at most
k errors. This time the matrix is C0..n,0..m and the construction formula is

Fast Multi-dimensional Approximate Pattern Matching 247

Ci,0 ← 0 , C0,j ← j

Ci,j ← if Pi = Tj then Ci−1,j−1 else 1 + min(Ci−1,j−1, Ci−1,j , Ci,j−1)

where the only change is that a pattern of length zero matches with no errors
at any text position. All the positions i such that Ci,m ≤ k are reported. This
takes O(mn) time. The space can be reduced to O(m) by noticing that only
the old and new column of the matrix need to be stored. We define led(T, P) as
the smallest edit distance among the pattern P and a suffix of T , and therefore
led(T1..i, P) = Ci,m.

In [5], a natural extension to the edit distance notion for two dimensional
strings (or “images”) A and B was defined (called RC in that paper, and ed2

in this work). It allows the errors to occur along any dimension. An algorithm
to compute the edit distance among two images is defined. For simplicity we
assume that they are square and of the same size m × m, although it is easy
to remove that limitation. The algorithm computes a four-dimensional matrix
C0..m,0..m,0..m,0..m, so that Ci,j,p,q = ed(A1..i,1..j, B1..p,1..q). C is built using the
formulas

Ci,0,0,0 ← i , C0,j,0,0 ← j

C0,0,p,0 ← p , C0,0,0,q ← q

Ci,j,p,q ← min(Ci−1,j,p−1,q + ed(Ai,1..j , Bp,1..q), Ci−1,j,p,q + j, Ci,j,p−1,q + q,

Ci,j−1,p,q−1 + ed(A1..i,j , B1..p,q) Ci,j−1,p,q + i, Ci,j,p,q−1 + p)

which has a very similar rationale of the one-dimensional case: at each point we
can solve the last row (first line of the min() formula) or the last column (second
line of the min() formula). In each case, we either insert the whole row, delete
the whole row, or replace the row of A by the row of B (and ed() gives the
best way to do it). This algorithm is O(m6) time and O(m4) space. However, by
precomputing all the values

Horizi,j,p,q = ed(Ai,1..j , Bp,1..q) V erti,j,p,q = ed(A1..i,j , B1..p,q)

(i.e. all the row-wise and column-wise alignments), the search time drops to
O(m4) and the space does not change. This is because the ed() of the C formula
are obtained in constant time, and Horiz consists of m2 one-dimensional edit
distance computations, among Ai,∗ and Bp,∗. The same holds for V ert.

The space can also be reduced to O(m3), as shown in [5]. We select, say, i as
the most external variable of the iteration to fill the matrix. Therefore, we need
only the values at iteration i − 1 to compute the values at iteration i. Hence,
we do not need to store all the cells of all the i-th iterations, just the last one.
The same can be done with Horiz and V ert, by using i as the most external
iteration variable.

In [5] they mention that this algorithm extends to d dimensions in time
O(m2d) but they do not give the details. We give a detailed algorithm in the
next section and show that the exact complexity is O(d!m2d). Also, no algo-
rithm was given in [5] to search a subimage in a larger image using the above

248 Gonzalo Navarro and Ricardo Baeza-Yates

distance function. We do so in the following sections. We finally extend the
one-dimensional filtering algorithm to more dimensions.

4 Edit Distance in More Dimensions

The idea of the previous section can be extended to compute edd(), i.e. the
edit distance generalized to d dimensions. The algorithm is O(d!m2d) time and
O(m2d−1) space.

A (2d)-dimensional matrix C is computed (d dimensions for A and d di-
mensions for B), and the ed() of the above formula is replaced by edd−1. If the
values of edd−1 are not precomputed then we have O(m2d−1) space (by using
the trick of selecting one variable as the most external in the iteration) plus the
space needed to compute edd−1 (only one at a time is computed). This gives the
recurrence

S1 = m , Sd = m2d−1 + Sd−1

which yields O(m2d−1) space. The time, on the other hand, involves to fill m2d

cells, where each cell performs a minimum over 3d elements (i.e. insertion, dele-
tion and edd−1 in d dimensions). This makes it necessary to compute d times
the function edd−1(). That is

T1 = m2 , Td = m2d 3d + m2d d Td−1

which yields O(d!md(d+1)). This matches the O(m6) result for two dimensions
mentioned in [5].

However, we may precompute all the necessary values of edd−1(). Along each
one of the d dimensions, we take all the m2 (i, p) possible combinations of values
of the selected dimension in A and B, and compute edd−1() between the (d−1)-
dimensional objects which result from restricting the selected dimension to i in
A and to j in B. Once this is done, the edd−1 computations can be taken as
constants in the formula of edd(). The time cost is now

T1 = m2 , Td = m2d 3d + dm2Td−1

which yields O(d!m2d) time (which matches the improved O(m4) algorithm of
[5] for two dimensions). This is a big improvement over the naive algorithm. The
space requirements are, however, higher. We have to store, for the d-dimensional
object, m2d cells plus the precomputed values, along each dimension, of all the
m2 combinations of (i, p) values for that dimension, and all the space for the
lower dimensions resulting for each pair (i, p). That is

S1 = m , Sd = m2d + dm2Sd−1

which yields

Sd = d!m2d

(
1
1!

+
1
2!

+ ... +
1
d!

)
≤ d!m2de = O(d!m2d)

and we can use the trick of the external variable to reduce this to O(d!m2d−1).

Fast Multi-dimensional Approximate Pattern Matching 249

5 A Dynamic Programming Search Algorithm

We modify the edit distance algorithm so that instead of computing the edit
distance between two elements, it searches a small pattern P of size md inside
a large text T of size nd. The idea is a simple modification of the edit distance
algorithm. For two dimensions the formula is as follows

Ci,0,0,0 ← 0 , C0,j,0,0 ← 0
C0,0,p,0 ← p , C0,0,0,q ← q

Ci,j,p,q ← min(Ci−1,j,p−1,q + led(Ai,1..j , Bp,1..q), Ci−1,j,p,q + q, Ci,j,p−1,q + q,

Ci,j−1,p,q−1 + led(A1..i,j, B1..p,q) Ci,j−1,p,q + p, Ci,j,p,q−1 + p)

where the only differences are that the basic values are zero when the pattern is
of size zero, that we penalize insertions and deletions according to the pattern
size, and that instead of ed() we use led(), so that we select the best suffix of
the text along each dimension. If we are searching allowing up to k errors, then
we report all text (i, j) positions such that Ci,j,m,m ≤ k.

The form to extend this to more dimensions is immediate. By repeating the
analysis of the above section, we see that the naive algorithm is O(d!(mn)

d(d+1)
2)

time and O(mdnd−1) space (since n is much larger than m, we select one of the
text coordinates as the most external variable). By precomputing the distances
in lower dimensions, the search algorithm is O(d!mdnd) time and O(d!mdnd−1)
space.

5.1 Correctness

We now prove that the above algorithm is correct (in two dimensions). This
extends easily to more dimensions.

Lemma: For each text position (i, j), it is possible to perform Ci,j,m,m edit
operations in the pattern P (converting it into P ′) so that the pattern P ′ matches
the text suffix T ..i, ..j, and this is not possible with less operations.

Proof: We prove the Lemma for any Ci,j,p,q. The Lemma is obviously true
for the base case of the formula. For the recursive case, we inductively assume
that the Lemma is true for the subproblems. We consider the first line of the
update formula, which corresponds to the rows (the other cases are equivalent).

If the value for Ci,j,p,q is obtained using a row insertion in the pattern, then
we can inductively align P1..p,1..q at T..i−1,j with cost Ci−1,j,p,q, and then insert
the text segment Ti,j−p+1..j in P at the cost of p more errors so as to align
P1..p,1..q at T..i,j.

If the value for Ci,j,p,q is obtained using a row deletion in the pattern, then
we can inductively align P1..p−1,1..q at T..i,j with cost Ci,j,p−1,q, and then delete
the pattern row Pp,1..q from P at the cost of p more errors so as to align P1..p,1..q

at T..i,j.
Finally, if we obtain Ci,j,p,q by replacing Pp,1..q with a row suffix of Ti,..j,

then the led() of the formula gives the optimal way to do it, so that we align

250 Gonzalo Navarro and Ricardo Baeza-Yates

P1..p−1,1..q at T..i−1,j with cost Ci−1,j,p−1,q, and then convert the pattern row
Pp,1..q to some text row suffix of Ti,..j, at led(Ti,1..j, Pp,1..q) cost.

Alternatively, we can use the recursion on the column values. It is also clear
that this cannot be done better. On the other hand, we can use induction over the
number of dimensions to show that the Lemma is correct for any d-dimensional
problem.

5.2 Reducing the Space Requirements

The space requirement of the algorithm is O(d!mdnd−1), which is too high. This
is awkward since the problem exhibits high locality. That is, the fact that a text
position matches or not depends only on the last (m+k)d-size text “suffix” that
ends at that point. In fact, if k > m we just need to start 2m positions behind
the subtext at each dimension, since if more than m errors are made along a
given line, it is better to just perform m replacements.

Therefore, if we cut the text in (n/s)d subtexts (of d dimensions) of size sd, we
can work separately at each subtext provided we start, at each dimension, m +
min(m, k) positions behind the cube so as to have the context properly initialized
when we reach the cube. The total time is (n/s)dd!md(m+min(m, k)+ s)d, and
the total space is d!md(m + min(m, k) + s)d−1.

For instance, we may select s = m, and then we obtain an algorithm which
is at most O(d!3dmdnd) time and O(d!3dm2d−1) space (and less if k < m),
which is much more reasonable. The minimum possible space requirement is
O(d!2dm2d−1), at time cost O(d!2dm2dnd) (that is, s = 1).

6 Multidimensional Exact String Matching

In [9], they allow to search, in two dimensions, a pattern in a text in O(n2/m)
average time. They traverse only the text rows of the form i×m searching for
all the pattern rows at the same time (using Aho-Corasick [1]), and verify all
potential matches. Clearly, no match can be missed with the filter.

In [9], the authors briefly mention that their technique can be extended to
more dimensions by selecting one dimension and recursively using an algorithm
for (d−1) dimensions on the m-th “rows” of such text. However no more details
are given, nor any analysis.

We give now a more detailed version of the algorithm and analyze it. We select
one dimension (say, coordinate i) and obtain n/m different (d− 1) dimensional
objects of the form Tm,1..n,1..n,..., T2m,1..n,1..n,..., ..., Tim,1..n,1..n,..., and so on. On
the other hand, we obtain m patterns of (d−1) dimensions, namely P1,1..m,1..m,...,
P2,1..m,1..m,..., ..., Pp,1..m,1..m,... and so on. All the m subpatterns are searched
in each one of the (d − 1) dimensional subtexts. See Figure 2. Each time one
of the (d− 1) dimensional subpatterns is found in a text position, the complete
d-dimensional pattern is checked.

An important part of the analysis of [9] for two dimensions is that the total
cost to verify potential matches is not too large. It is not immediate that this

Fast Multi-dimensional Approximate Pattern Matching 251

2-d text

2-d pattern

2-d pattern

3-d text3-d pattern

3-d pattern

Fig. 2. Algorithm for exact searching. All the pattern “rows” are searched in
n/m text “rows” at the same time.

is still valid for more dimensions, since a very large number of verifications are
finally triggered.

The cost to verify a potential match in d dimensions is always O(1) on aver-
age, since we have to check if md letters of the pattern are equal to the text at
a given position. Since we stop the checking as soon as we find a mismatch, we
verify more than c characters with probability 1/σc. Hence, the average number
of characters checked is

∑
1/σc = O(1) (even for patterns of unbounded size).

We denote by Ed,r the average search cost for r patterns in d dimensions.
The existence of the Aho-Corasick [1] algorithm implies that E1,r = n. Now, for
d dimensions, we perform n/m searches for rm patterns on d−1 dimensions, and
check all the candidates that occur. The probability of a pattern of size md−1

occurring in a text position is 1/σmd−1
, but we multiply that by rm because

we search for rm different patterns. As the average cost to verify each potential
match is O(1), and the (d− 1) dimensional texts are of size nd−1, we have that

Ed,r =
n

m

(
Ed−1,rm + nd−1 rm

σmd−1

)
=

n

m
Ed−1,rm +

ndr

σmd−1

which gives

Ed,r =
nd

md−1
+

d−1∑
w=1

ndr

σmw = O

(
nd

(
1

md−1
+

r

σm

))

(where the first term corresponds to the actual searches which are all done in
one dimension).

To search for one pattern we replace r by 1 in this final formula (although the
algorithm internally uses multipattern search). This formula matches the result
for two dimensions, since 1/σm = o(1/m). In general, if d is considered fixed,
the above result for r = 1 can be bounded by O(nd/md−1).

The space complexity of the algorithm corresponds to the Aho-Corasick ma-
chine, whose space requirements are proportional to the total size of all the
patterns, i.e. O(rmd). We use now this algorithm as a building block.

252 Gonzalo Navarro and Ricardo Baeza-Yates

3 dimensions1 dimension

2 dimensions

Fig. 3. Filtering algorithm for j = 3. The maximum possible k so that some
block appears unchanged is 2, 2, and 8 as the dimension grows.

7 A Fast Filter for Multidimensional Approximate Search

We present now an effective filter to quickly discard large parts of the text which
cannot contain a match, so that we use the dynamic programming algorithm to
verify only the text areas which could contain an occurrence of the pattern.

The filter is based on a generalization of the one-dimensional filter explained
in Section 2. In that case, we cut the pattern in (k + 1) pieces, and since each
error can destroy at most one piece, we have always one piece left untouched
inside each occurrence.

In two and more dimensions, we cut the pattern in j pieces along each di-
mension, for some 1 ≤ j ≤ m (see Figure 3). Since each error occurs along one
dimension only, at most kj pieces are destroyed. Therefore, since there are jd

pieces in total, it is enough that jd > kj to ensure that at least one of the
pieces is left untouched (although we do not know which one). Hence, we search
for all the jd pieces at the same time in the text without allowing errors. Those
pieces are of size (m/j)d, and can be searched with the algorithm of the previous
section in O(md) space and an average time of

nd

(
1

(m/j)d−1
+

jd

σm/j

)
= jdnd

(
1

jmd−1
+

1
σm/j

)

Each time one such piece is found, we have to verify a surrounding text
area to check for a possible match. This area extends (m + 2 min(m, k)) po-
sitions along each dimension (since the match could start at most min(m, k)
positions backward or finish up to min(m, k) positions forward). Hence, the cost
of a verification is the same as that of searching the pattern in a text of size

Fast Multi-dimensional Approximate Pattern Matching 253

(m + 2 min(m, k))d allowing errors, which is O(d!md(m + 2 min(m, k))d). The
total number of verifications is obtained by multiplying the number of pattern
pieces jd by the probability of a piece matching, i.e. 1/σ(m/j)d

. Hence, the total
expected cost for verifications is jdd!md(m + 2 min(m, k))dnd/σ(m/j)d

.
Notice that, since we only verify pieces of the text of size (m+2 min(m, k))d,

the space requirement of this algorithm is O(d!md(m + 2 min(m, k))d−1) (this
corresponds to the verification phase, since the search of the pieces needs much
less, i.e. O(md)). This is a form of our previous technique to reduce space re-
quirements (recall Section 5.2) equivalent to using s = min(m, k). However, in
this case we only check a few portions of the text.

Both the search and the verification cost worsen as j grows, so we are inter-
ested in the minimum j that works. As said, we need that jd > kj, hence

j =
⌊
k

1
d−1

⌋
+ 1

is the best choice. The formula does not work for one dimension (because it is
not true that kj pieces are destroyed), and for 2 dimensions it sets j = k + 1 as
in the traditional one-dimensional case. Notice that we need that j ≤ m, and
therefore the mechanism works for k < k3 = md−1. Using this optimum (and
minimum) j, the total cost of searching plus verifying is

ndk
d

d−1

(
1

md−1k
1

d−1
+

1
σm/k1/(d−1) +

d!md(m + 2 min(m, k))d

σmd/kd/(d−1)

)

which worsens as k grows. This search complexity has three terms, each of which
dominates for a different range of k values. The first one dominates for

k ≤ k0 =
md−1

(d logσ m)d−1
(1 + o(1))

while the second dominates from k > k0 until

k ≤ k1 =
md−1

(d(logσ d + 2 logσ m))
d−1

d

(1 + o(1))

In the maximum acceptable value k = md−1 − 1, the search complexity be-
comes O(d!3dm3dnd), which is worse than using dynamic programming. We want
to know which is the k value for which the filter is better than dynamic program-
ming. We can compare against the version that uses the same amount of space
(which corresponds to s = min(m, k)), whose time complexity is O(d!2dm2dnd);
or we can compare it against the fastest version of dynamic programming, which
needs much more space and whose time cost is O(d!mdnd). In either case we have
that the k range for which the filter is better than dynamic programming is

k ≤ k2 =
md−1

(2d logσ m)
d−1

d

(1 + o(1))

254 Gonzalo Navarro and Ricardo Baeza-Yates

where the difference in the version of dynamic programming used affects lower
order terms only.

Finally, the most stringent condition we can ask to the filter is to be sub-
linear, i.e. faster than O(nd). If we try to consider the third term of the search
complexity as dominant, we arrive to a k value which is smaller than k1, which
means that the solution is in a stricter k range. By considering the second term
of the search complexity, we arrive to the condition k ≤ k0. That is, the search
time is sublinear precisely when the first term of the summation dominates.

To summarize, the search algorithm is sublinear (i.e. O(knd/md−1)) for
k < (m/(d logσ m))d−1, and it improves over dynamic programming for k ≤
md−1/(2d logσ m)(d−1)/d. Figure 4 illustrates the result of the analysis.

0

Dyn. prog.

k

third termsecond term

Filter

k k k k0 1 2 3

O(n)d

dominates
first term

dominates dominates

Fig. 4. The complexity of the proposed filter, depending on k.

7.1 A Stricter Filter

We have assumed up to now that we verify the presence of the pattern allowing
errors as soon as any of the jd pieces appears. However, we can do better. We
know that jd−jk pieces must appear, at their correct positions, for a match to be
possible. Therefore, whenever a piece appears, we can check the neighborhood for
the exact occurrences of other pieces. On average, the verification of each piece
will fail in O(1) character comparisons, and we will check O(jk) pieces until jk
of them fail the test (this is because both are geometric processes). Therefore,
we have a preverification test which occurs with probability jd/σ(m/j)d

, costs
O(jk) and is able to discard more text positions before actually verifying the

Fast Multi-dimensional Approximate Pattern Matching 255

candidate area. The probability that a text position passes the preverification
test and undergoes the dynamic programming verification can be computed by
considering that jd − jk cells need to match, which means that md − kmd/jd−1

characters match. On the other hand, we can select as we want which jk cells
match out of jd, which multiplies the probability by

(
jd

jk

)
. Finally, if the text

area passes this filter, we verify it at the same cost as before (i.e. d!md(m +
2 min(m, k))d). The new search cost is therefore

nd

 jd−1

md−1
+

jd

σm/j
+

jdjk

σ(m/j)d +

(
jd

jk

)
d!md(m + 2 min(m, k))d

σmd−kmd/jd−1

where the first term dominates for j ≤ m/(d logσ m), the second one up to
j ≤ m/(logσ m + logσ k)1/d, and the third one for larger j. The fourth term
decreases with j, and therefore it is not immediate that the minimum j is the
optimum (in fact it is not). We have not been able to determine the optimum
j, but we can still obtain the maximum k value up to where the filter is better
than dynamic programming. The first two terms are never worse than dynamic
programming, and the third improves over dynamic programming for

j ≤ m

(logσ m + logσ k − d logσ d)1/d
(1 + o(1))

which gives a condition on k since jd−1 > k:

k ≤ k′2 =
md−1

(d(logσ m− logσ d))
d−1

d

(1 + o(1))

Now, we introduce this maximum j value into the fourth term to determine
whether it is also better than dynamic programming at that point. The result
is that, using that j value, the fourth term is dominated by the third precisely
for k ≤ k′2. Therefore we improve over dynamic programming for k ≤ k′2 (which
is better than our previous k2 limit). The proposed j is the best for high k
values, but smaller values are better for lower k values. In particular, we may be
interested in obtaining the sublinearity limit for this filter. The first three terms
put an upper bound on j, the strictest one being

j ≤ m

d(logσ m− logσ d)
(1 + o(1))

and using this maximum j value the fourth term gives us the maximum k that
allows sublinear search time:

k ≤ k′0 =
md−1

(d(logσ m− logσ d))d−1
(1 + o(1))

which is slightly better than our previous k0 limit.

256 Gonzalo Navarro and Ricardo Baeza-Yates

7.2 Adapting the Filter to Substitutions

The problem of searching a pattern allowing k substitutions is much simpler, and
we can apply our machinery to that case as well. A brute force search algorithm
checks any possible text position until it finds k mismatches. Being a geometric
process, this occurs after O(k) character comparisons, which makes the total
search cost O(knd) on average.

The same filter proposed in this section works for the case of k substitutions,
the only difference being that in this case the cost to verify a candidate text
position is O(k), i.e. much cheaper. The search cost still has three terms, the
first one being dominant for k ≤ k0. The second component is now dominant for

k ≤ k′1 =
md−1

(d logσ m)
d−1

d

(1 + o(1))

and the last one dominates for k > k′1. This filter is sublinear (i.e. does not
inspect all the text characters) on average for k < k0 as before. On the other
hand, it turns out to be better than brute force (i.e. O(knd)) for k ≤ k′1, i.e.
before the verification step dominates the search cost.

8 Conclusions

We have presented the first algorithms to search a multidimensional pattern
in multidimensional text allowing editing errors along any dimension. This is
a new model recently proposed in [5]. We have generalized to d dimensions
their algorithm to compute edit distance, where we obtained O(d!m2d) time and
O(d!m2d−1) space (where the compared elements are of size md).

We have obtained and proved the correctness of the first search algorithm
for this model, where a pattern of size md is searched in a text of size nd at
O(d!mdnd) time and O(d!mdnd−1) space. We have shown how to trade time for
space, for instance with O(d!3dm2d−1) space we have O(d!3dmdnd) time.

Finally, we have proposed a filter which obtains roughly O(knd/md−1) (i.e.
sublinear) average search time for k < (m/(d(logσ m− logσ d)))d−1, where σ is
the alphabet size. After that error level the filter changes its cost but remains
better than dynamic programming for k ≤ md−1/(d(logσ m − logσ d))(d−1)/d.
For instance, in two dimensions the filter is sublinear for k < m/(2 logσ m) and
better than dynamic programming for k ≤ m/

√
2 logσ m.

These are the first search algorithms and fast filters for the first model which
extends successfully the concept of approximate string matching to more than
one dimension. Although we present the algorithms for square d-dimensional
pattern and text, they also work for hyper-rectangular elements.

Our work is a (very preliminary) step towards presenting a combinatorial
alternative to the current image processing technology. However, for this to be
successful, we must allow not only errors but also rotations, scalings and defor-
mations in the images. There are some works addressing those issues separately
[2, 14], but they have not been merged. We are currently working on this inte-
gration.

Fast Multi-dimensional Approximate Pattern Matching 257

References

[1] A. Aho and M. Corasick. Efficient string matching: an aid to bibliographic search.
CACM, 18(6):333–340, June 1975.

[2] A. Amir and G. Calinescu. Alphabet independent and dictionary scaled matching.
In Proc. CPM’96, number 1075 in LNCS, pages 320–334, 1996.

[3] A. Amir and M. Farach. Efficient 2-dimensional approximate matching of non-
rectangular figures. In Proc. SODA’91, pages 212–223, 1991.

[4] A. Amir and G. Landau. Fast parallel and serial multidimensional approximate
array matching. Theoretical Computer Science, 81:97–115, 1991.

[5] R. Baeza-Yates. Similarity in two-dimensional strings. In Proc. COCOON’98,
number 1449 in LNCS, pages 319–328, Taipei, Taiwan, August 1998.

[6] R. Baeza-Yates and G. Navarro. Fast two-dimensional approximate pattern
matching. In Proc. LATIN’98, number 1380 in LNCS, pages 341–351. Springer-
Verlag, 1998.

[7] R. Baeza-Yates and G. Navarro. Faster approximate string matching. Algorith-
mica, 23(2):127–158, 1999. To appear. Preliminary version in Proc. CPM’96.

[8] R. Baeza-Yates and C. Perleberg. Fast and practical approximate pattern match-
ing. In Proc. CPM’92, LNCS 644, pages 185–192, 1992.

[9] R. Baeza-Yates and M. Régnier. Fast two dimensional pattern matching. Infor-
mation Processing Letters, 45:51–57, 1993.

[10] T. Baker. A technique for extending rapid exact string matching to arrays of more
than one dimension. SIAM Journal on Computing, 7:533–541, 1978.

[11] R. Bird. Two dimensional pattern matching. Inf. Proc. Letters, 6:168–170, 1977.
[12] B. Commentz-Walter. A string matching algorithm fast on the average. In Proc.

ICALP’79, number 6 in LNCS, pages 118–132. Springer-Verlag, 1979.
[13] M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press, Oxford,

UK, 1994.
[14] K. Fredriksson and E. Ukkonen. A rotation invariant filter for two-dimensional

string matching. In Proc. CPM’98, number 1448 in LNCS, pages 118–125, 1998.
[15] J. Karkkäinen and E. Ukkonen. Two and higher dimensional pattern matching

in optimal expected time. In Proc. SODA’94, pages 715–723. SIAM, 1994.
[16] K. Krithivasan. Efficient two-dimensional parallel and serial approximate pattern

matching. Technical Report CAR-TR-259, University of Maryland, 1987.
[17] K. Krithivasan and R. Sitalakshmi. Efficient two-dimensional pattern matching

in the presence of errors. Information Sciences, 43:169–184, 1987.
[18] S. Needleman and C. Wunsch. A general method applicable to the search for

similarities in the amino acid sequences of two proteins. J. of Molecular Biology,
48:444–453, 1970.

[19] K. Park. Analysis of two dimensional approximate pattern matching algorithms.
In Proc. CPM’96, LNCS 1075, pages 335–347, 1996.

[20] P. Sellers. The theory and computation of evolutionary distances: pattern recog-
nition. J. of Algorithms, 1:359–373, 1980.

[21] S. Wu and U. Manber. Fast text searching allowing errors. CACM, 35(10):83–91,
October 1992.

[22] R. Zhu and T. Takaoka. A technique for two-dimensional pattern matching.
Comm. ACM, 32(9):1110–1120, 1989.

Finding Common RNA Secondary Structures

from RNA Sequences?

Zhuozhi Wang and Kaizhong Zhang

Dept. of Computer Science, University of Western Ontario,
London, Ont. N6A 5B7, Canada

kzhang@csd.uwo.ca

1 Introduction

RNAs (Ribonucleic Acids) play an important role when organisms reproduce
themselves. RNAs are single-stranded, however they tend to form higher order
structures such as secondary or tertiary structures by folding onto themselves.
It is the RNA structures that determine the functions of RNA sequences. Since
it is very difficult to crystallize and/or get nuclear magnetic resonance spectrum
data for large RNA molecules, reliable methods to determine RNA structures
from the primary sequences is important. An important step toward the deter-
mination of RNA structure is the prediction of RNA secondary structures. Based
on a reliable RNA secondary structure, possible tertiary interactions that occur
between secondary structural elements and between these elements and single-
stranded region can be characterized. Thermodynamic stability methods have
been developed [5] to fold a single RNA into secondary structures with minimum
or near minimum energy with some success. Phylogenetic comparative methods
are more successful which try to determine the common secondary structures
from a set of RNA sequences by checking a large number of possible base pair-
ings for their possible conservation. However this method is very tedious since it
is basically performed manually. In this abstract, we propose an algorithm using
dynamic programming trying to automate the phylogenetic comparative pro-
cess. Given three RNA sequences, we first apply the folding algorithms for each
sequence to determine the frequently recurring stems which are considered to be
thermodynamically favourable. We then apply our algorithm to the three stem
lists generated from the folding algorithm to determine the common secondary
structures. We have applied our method to three viruses: cocksackievirus, human
rhinovirus (type 14), and poliovirus (type 3). Our method successfully produced
the main components of the common secondary structures of these viruses.

2 Notations

An RNA molecule is made up of a long chain of subunits (ribonucleotides) linking
together. Each ribonucleotide contains one of four possible bases, A (adenine),
? Research supported partially by the Natural Sciences and Engineering Research

Council of Canada under Grant No. OGP0046373.

M. Crochemore, M. Paterson (Eds.): CPM’99, LNCS 1645, pp. 258–269, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Finding Common RNA Secondary Structures from RNA Sequences 259

C (cytosine), G (guanine), and U (uracil). Thus an RNA molecule is uniquely
determined by its sequence of bases. RNAs fold by intramolecular base pairing.
RNA secondary structures are stabilized by the hydrogen bonds that results from
these base pairing. In addition, the stacking of base pairs in a helix stabilizes
the molecule and decreases the free energy of the folded structure. However the
appearance of loops destabilizes the RNA structure. In an RNA structure, base
pairs will usually be formed as one of the three kinds: G-C, A-U and G-U. There
are three hydrogen bonds between G-C, two between A-U, and one between
G-U.

It is clear that the RNA secondary structure is much more complicated than
the RNA primary structure. Given an RNA R = a1a2...an, we use ai·aj to denote
a base pair between ai and aj where 1 ≤ i < j ≤ n. Following the tradition, we
will refer to the first base ai as the 5′ end of the pair and the second base aj as
the 3′ end of the pair. Formally we say S is a secondary structure if if satisfies
the following conditions.

1. If S contains ai · aj , then ai and aj are either A and U, U and A, C and
G, G and C, G and U, or U and G.

2. If S contains ai ·ak, then it cannot contain ai ·aj (with j 6= k) or aj ·ak (with
i 6= j). (one-to-one)

3. If h < i < j < k, then S cannot contain both ah ·aj and ai ·ak. (non-crossing)
4. If S contains ai · aj , then |j − i| ≥ 4

RNA secondary structure can be decomposed into five kinds of substructures,
namely stems, hairpin loops, bulge loops, interior loops and multiple loops. If S
contains ai ·aj , ai+1 ·aj−1, . . ., ai+h−1 ·aj−h+1, we say each of these pairs (except
the last) is stack on the following pair. We refer to these consecutive pairs as a
stacked pair or as a stem and denote it as (i, j, h). RNA secondary structure is
determined by its set of stems since this set is just another representation of its
set of base pairs.

We now consider the relationship between two stems I = (i1, j1, h1) and
II = (i2, j2, h2) from a stem list (not necessarily a secondary structure), see
Figure 1 and 2. In Figure 1 and 2, we use the so-called Domes Representation.

a b a’

3’5’

Fig. 1. Crossing stems

260 Zhuozhi Wang and Kaizhong Zhang

5’ a b a’ b’ 3’

Fig. 2. Non-crossing stems

We say that stem I and stem II are crossing if and only if i1 ≤ i2 ≤ j1 ≤ j2.
In Figure 1 are crossing stems. We say stem I is before stem II or stem II is
after stem I if and only if j1 < i2, see Figure 2. We say stem I is outside stem II
or stem II is inside stem I if and only if i1 + h ≤ i2 < j2 ≤ j1 − h, see Figure 2.

3 Algorithm

3.1 Definitions

Since our algorithm with deal with three stem lists generated from folding algo-
rithm, we now consider three stem lists S, T , and U .

Given a triple (s, t, u), where s = (i1, j1, h1) is from S, t = (i2, j2, h2) is from
T , and u = (i3, j3, h3) is from U , we define score(s, t, u) = min{h1, h2, h3}.

Given two triples (s1, t1, u1) and (s2, t2, u2), where s1 and s2 are from stem
list S, t1 and t2 are from stem list T , and u1 and u2 are from stem list U , we
say (s1, t1, u1) and (s2, t2, u2) are compatible if and only if

1. s1 and s2 are not crossing;
2. t1 and t2 are not crossing;
3. u1 and u2 are not crossing;
4. s1 and s2 in S, t1 and t2 in T , and u1 and u2 in U have the same relationship.

Given three stem lists S, T and U , our goal is to find a maximal set of non-
crossing stems from each list such that they form the same topological structure.
Formally we define the weight of S, T and U as follows:
weight(S, T, U) =

max
k1,k2,...,kn

{
n∑

i=1

score(ski , tki , uki)

∣∣∣∣ ski ∈ S, tki ∈ T, uki ∈ U ; for any i and j,
(ski , tki , uki) and (skj , tkj , ukj) are compatible

}

Suppose that S, T , and U are sorted by the 3′ end of the stems. Let si be
the ith stem in S, tj be the jth stem in T , and uk be the kth stem in U . Let

Finding Common RNA Secondary Structures from RNA Sequences 261

S′i be the stem list containing the stems below si, T ′j be the stem list containing
the stems below tj , and U ′

k be the stem list containing the stems below uk. We
define forest weight(i, j, k) and tree weight(i, j, k) as follows.

forest weight(i, j, k) = weight({s1, ..si}, {t1, ..tj}, {u1, ..uk})

tree weight(i, j, k) = score(si, tj , uk) + weight(S′i, T
′
j , U

′
k)

3.2 Properties

Lemma 1. Let i′ be the largest index such 3′ end of si′ is less than 5′ end of
si, j′ be the largest index such 3′ end of tj′ is less than 5′ end of tj, and k′ be
the largest index such 3′ end of uk′ is less than 5′ end of uk, then

forest weight(i, j, k) = min

forest weight(i− 1, j, k)
forest weight(i, j − 1, k)
forest weight(i, j, k − 1)
forest weight(i′, j′, k′) + tree weight(i, j, k)

Proof. Consider the best way to match s1, ..., si, t1, ..., tj , and u1, ..., uk, there
are four possibilities. First, si does not match to any stem in T or U, therefore
forest weight(i, j, k) = forest weight(i− 1, j, k). Second, tj does not match to
any stem in S or U, therefore forest weight(i, j, k) = forest weight(i, j− 1, k).
Third, uk does not match to any stem in S or T, therefore forest weight(i, j, k) =
forest weight(i, j, k−1). Fourth, si, tj , and uk are matched up with each other,
we have forest weight(i, j, k)= forest weight(i′, j′, k′) + tree weight(i, j, k).

ut
Based on this lemma, we can implement the algorithm by using six nested

loops. The resulting algorithm is reasonable for two stem lists. However for three
stem lists, it is extremely slow. Note that for the practical application we always
consider RNAs with some sequence similarity. This means that we do not need
to consider all the triples. Instead, we only need to consider triples which are
close. This will speed up the algorithm.

We now refine our definition of weight(S, T, U). We introduce one parameter
end control to reduce the number of stems that we need to consider. Given two
stems s = (i1, j1, h1) and t = (i2, j2, h2), we say s and t are semi-matchable if
|j1 − j2| ≤ end control. We say they are matchable if they are semi-matchable
and in addition |i1 − i2| ≤ end control. We use s <> t to denote this relation.
weight(S, T, U) =

max
k1,k2,...,kn

{
n∑

i=1

score(ski , tki , uki)

∣∣∣∣∣
ski ∈ S, tki ∈ T, uki ∈ U ; for any i and j,
(ski , tki , uki) and (skj , tkj , ukj) are compatible
for any i, ski <> tki , tki <> uki , uki <> ski .

}

With this refined definition, the definitions of forest weight(i, j, k) and
tree weight(i, j, k) remain the same as before.

262 Zhuozhi Wang and Kaizhong Zhang

Lemma 2. Let i′ be the largest index such 3′ end of si′ is less than 5′ end of
si, j′ be the largest index such 3′ end of tj′ is less than 5′ end of tj, and k′ be
the largest index such 3′ end of uk′ is less than 5′ end of uk, then

forest weight(i, j, k) = min

forest weight(i− 1, j, k)
forest weight(i, j − 1, k)
forest weight(i, j, k − 1)
forest weight(i′, j′, k′) + tree weight(i, j, k)

if si <> tj , tj <> uk, and uk <> si

Proof. The proof is exactly the same as that of lemma 1 except that in order
for si, tj , and uk to match they have to satisfy the condition that si <> tj ,
tj <> uk, and uk <> si. ut

From this lemma we know that we only need to compute tree weight(i, j, k)
in case si <> tj , tj <> uk, and uk <> si.

For stem si in stem list S, consider its semi-matchable stems in stem list T .
Since T is sorted, there is an interval [s, e] such that tj is semi-matchable with
si if and only if s ≤ j ≤ e.

For any stem si in S, let sS
T (i) and eS

T (i) be the starting and ending indices
of si’s semi-matchable stems in stem list T . Similarly we can define sS

U (i), eS
U (i),

eT
S (j), and eU

S (k).

Lemma 3.

forest weight(i, j, k) = forest weight(i, j − 1, k) if j > eS
T (i)

forest weight(i, j, k) = forest weight(i, j, k − 1) if k > eS
U (i)

forest weight(i, j, k) = forest weight(i− 1, j, k) if j < sS
T (i) or k < sS

U (i)

Proof. When k > eS
U (i), uk is useless since it cannot match any sl where 1 ≤ l ≤

i. Therefore forest weight(i, j, k) = forest weight(i, j, k− 1). Similarly, we can
prove that if j > eS

T (i), then forest weight(i, j, k) = forest weight(i, j − 1, k).
If j < sS

T (i) or k < sS
U (i), then si is useless since either it cannot match to

tl where 1 ≤ l ≤ j or it cannot match to ul where 1 ≤ l ≤ k. Therefore
forest weight(i, j, k) = forest weight(i− 1, j, k). ut

From this lemma, we know that for each si in stem list S, we only need to
compute forest weight(i, j, k) such that sS

T (i) ≤ j ≤ eS
T (i) and sS

U (i) ≤ k ≤
eS

U (i).

Lemma 4.
If j > eS

T (i) and sS
U (i) ≤ k ≤ eS

U (i), then

forest weight(i, j, k) = forest weight(i, eS
T (i), k).

If sS
T (i) ≤ j ≤ eS

T (i) and k > eS
U (i), then

forest weight(i, j, k) = forest weight(i, j, eS
U (i)).

Finding Common RNA Secondary Structures from RNA Sequences 263

If j > eS
T (i) and k > eS

U (i), then
forest weight(i, j, k) = forest weight(i, eS

T (i), eS
U (i)).

Proof. We can prove this lemma by applying lemma 3 repeatedly. ut

Lemma 5.
If j < sS

T (i) and k ≥ sS
U (i), then

forest weight(i, j, k) = forest weight(eT
S (j), j, k).

If j ≥ sS
T (i) and k < sS

U (i), then
forest weight(i, j, k) = forest weight(eU

S (k), j, k).

If j < sS
T (i) and k < sS

U (i), then
forest weight(i, j, k) = forest weight(min{eT

S (j), eU
S (k)}, j, k).

Proof. We can prove this lemma by applying lemma 3 repeatedly. ut

Lemma 6. If sS
T (i) ≤ j and sS

U (i) ≤ k, then

forest weight(i, j, k) = forest weight(i, min{j, eS
T (i)}, min{k, eS

U (i)}))

Proof. Immediately from lemma 4. ut

Lemma 7. If j < sS
T (i) or k < sS

U (i), let i1 = min{eT
S (j), eU

S (k)}, then

forest weight(i, j, k) = forest weight(i1, min{j, eS
T (i1)}, min{k, eS

U(i1)})

Proof. If k ≥ sS
U (i), then eU

S (k) ≥ i and If j ≥ sS
T (i), then eT

S (j) ≥ i. Therefore
by lemma 5, forest weight(i, j, k) = forest weight(min{eT

S (j), eU
S (k)}, j, k). Let

i1 = min{eT
S (j), eU

S (k)}, by lemma 6 forest weight(i, j, k) = forest weight(i1,
min{j, eS

T (i1)}, min{k, eS
U (i1)}). ut

3.3 Algorithm

The algorithm works as follows:

– For each triple of stems (si, tj, uk) that are matchable, calculate
tree weight(i, j, k);

– Compute weight(S, T, U).
– Trace back to collect the matchable stems in each stem list that contribute

to the weight(S, T, U).

The algorithm to calculate tree weight(i, j, k) and weight(S, T, U) is given
in figure 3.

264 Zhuozhi Wang and Kaizhong Zhang

Input: Three stem lists S, T , and U .
Output: weight(S,T, U).

compute sS
T (i) and eS

T (i); 1 ≤ i ≤ |S|
compute sS

U (i) and eS
U (i); 1 ≤ i ≤ |S|

compute eT
S (j); 1 ≤ j ≤ |T |

compute eU
S (k); 1 ≤ k ≤ |U |

compute before stem(S, i), 1 ≤ i ≤ |S|;
compute before stem(T, j), 1 ≤ j ≤ |T |;
compute before stem(U, k), 1 ≤ k ≤ |U |;

for i := 1 to |S| do
ii = before stem(S, i);

for j := sS
T (i) to eS

T (i) do
jj = before stem(T, j);
for k := sS

U (i) to eS
U (i) do

kk = before stem(U,k);
(i′, j′, k′) = adjust(i− 1, j, k);
m[0] = forest weight(i′, j′, k′);
(i′, j′, k′) = adjust(i, j − 1, k);
m[1] = forest weight(i′, j′, k′);
(i′, j′, k′) = adjust(i, j, k − 1);
m[2] = forest weight(i′, j′, k′);
m[3] = 0;
if si <> tj and tj <> uk and uk <> si then

(i′, j′, k′) = adjust (ii, jj, kk);
m[3] = forest weight(i′, j′, k′);

+ tree weight[i][j][k];
forest weight[i][j][k] = max(m[0], m[1], m[2], m[3])

return forest weight(|S|, |T |, |U |);

Fig. 3. Procedure: Computing weight(S, T, U)

We first compute sS
T (i), eS

T (i), sS
U (i), eS

U (i), eT
S (j), and eU

S (k). This step can
be done in linear time.

We then compute before stem(S, i) which denotes the largest indexed stem
in S whose 3′ end is less than si’s 5′ end. We also compute before stem(T, j)
and before stem(U, k). After a sorting, this step can be done in linear time.

The main part of the algorithm is three nested loops. For any given i, where
1 ≤ i ≤ |S|, we only calculate forest weight(i, j, k) for sS

T (i) ≤ j ≤ eS
T (i) and

sS
U (i) ≤ k ≤ eS

U (i). When calculating forest weight(i, j, k), we may refer to
locations which are outside our calculating range. In this situation, we need to
adjust the indices by using lemma 6 or lemma 7.

Finding Common RNA Secondary Structures from RNA Sequences 265

Let nT be the maximum number of stems in T that are semi-matchable with
a single stem in S. Let nU be the maximum number of stems in U that are
semi-matchable with a single stem in S. The time complexity of the algorithm
in figure 3 bounded by O(|S| × nT × nU). The toltal time complexity of our
algorithm is is O(|S|2 × n2

T × n2
U). With the end control parameter, we can

control nT and nU .

4 Experiment Results

In our experiments, we used three viruses — cocksackievirus, human rhinovirus
(type 14) and poliovirus (type 3) [2]. We call them CVB, HRV, and POL. These
viruses are believed to belong to the same family, and therefore they should have
common secondary structures.

We first apply the folding algorithms [5] for each sequence to determine
the frequently recurring stems which are considered to be thermodynamically
favourable. We then apply our algorithm to the stem lists generated to determine
the common secondary structures.

The results shown in figure 4, 5, and 6 are obtained by setting parameters
end3 control to 20. RNA secondary structure display is provided by Structure-
Lab from U.S. National Cancer Institute.

Compared with the published results in [2] using phylogenetic comparative
methods, our algorithm produced main components of the common secondary
structures.

From base 1 to base 89, our results are almost the same as those in [2].
From base 241 to base 441, the shape is also almost the same except for

missing some short stems, which are missing from the input stem lists as well.
These short stems can be generated by running the folding algorithm again with
the stems we have found fixed. This will make the large internal loops disappear.

From base 445 to base 560, we also got the same shape.
The substructure from base 90 to base 240 differs considerably. Again, this

is caused by the lack of appropriate input stems.
Note that using folding algorithm alone cannot produce the correct secondary

structure model. In our experiment, for each sequence, the folding algorithm
generated thousands of secondary structures none of which is close to the correct
model.

In conclusion, together with the folding algorithms, our algorithm can pro-
duce main components of common RNA secondary structures from RNA se-
quences. Base on these components, a more accurate model can be developed.

5 Conclusion and Future Work

We present an algorithm which produced reasonable models for common sec-
ondary structures from three RNA sequences.

We are currently improving our algorithms. The score between three stems
is too simple to be realistic. We plan to change it into more meaningful measure.

266 Zhuozhi Wang and Kaizhong Zhang

We would also like to do a preprocessing to check the situation where a stem
has a matchable stem in the second list but not in the third list. In this case
we may want check output from folding algorithm to see if some corresponding
stem exist with lower frequence. These stems can be added to the third stem
list.

cvb

Fig. 4. Figure of CVB

Finding Common RNA Secondary Structures from RNA Sequences 267

6 Acknowledgements

We would like to thank Dr. Shapiro (U.S. National Cancer Institute) for his help
on providing viruses RNA data and displaying RNA secondary structures using
StructrueLab.

hrv

Fig. 5. Figure of HRV

268 Zhuozhi Wang and Kaizhong Zhang

References

1. S. Y. Le, K. Zhang, and J.V. Maizel, Jr., ‘A method for predicting common struc-
tures of homologous RNAs’, Computers and Biomedical Research, 128, pp.53-66,
1995.

2. S. Y. Le and M. Zuker, ‘Common structure of the 5′ non-coding RNA in en-
teroviruses and Rhinovirusws – Thermodynamical stability and statistical signif-
icance’, J. Mol. Biol., 216, pp.729-741, 1990.

3. Waterman, M.S. Eds., ‘Mathematical methods for DNA sequence’, CRC Press, Boca
Raton, FL 1989.

pol

Fig. 6. Figure of POL

Finding Common RNA Secondary Structures from RNA Sequences 269

4. A.L. Wiliams and I. Tinoco, Jr., ‘A dynamic programming algorithm for finding
alternate RNA secondary structures’, Nucleic Acids Research, 14, pp.199-315, 1986.

5. M. Zuker, ‘On finding all suboptimal foldings from of an RNA molecule’, Science
244, pp.48-52, 1989.

6. M. Zuker and D. Sankoff, ‘RNA secondary structure and their prediction’, Bull.
Math. Biol. 46, pp.591-621, 1984.

7. M. Zuker and P. Stiegler, ‘Optimal computer folding of large RNA sequences using
thermodynamics and auxiliary information’, Nucleic Acid Res. 9, pp.133-148, 1981.

Finding Common Subsequences with Arcs and

Pseudoknots

Patricia A. Evans

Computer Science
University of New Brunswick

Fredericton, NB, Canada

Abstract. This paper examines the complexity of comparing sequences
that have arcs linking symbol pairs. Such arc-annotated sequences can
represent molecular sequences with bonds between bases, such as RNA
sequences. Crossing arcs that can represent sequence pseudoknots are
included. The problem of finding the longest common subsequence, on
which pairwise sequence comparison algorithms are frequently based, is
modified to require common subsequences to preserve the arcs induced
by the selected symbol positions. This problem is then analyzed using
classical and parameterized complexity. It is shown to be NP-complete,
and also W[1]-complete when parameterized by desired length of common
subsequence. If it is parameterized instead by arc cutwidth k, however,
it becomes fixed-parameter tractable, and usable for sequences with arc
structures of limited cutwidth. An algorithm is given that runs in time
∈ O(9knm).

1 Introduction

Genetic and protein sequence similarity can indicate evolutionary similarity and
some functional similarity between the sequences. One common way to measure
the similarity of two sequences is pairwise sequence alignment, a method of com-
parison based on the longest common subsequence algorithm (see [5] and [7]).
Arcs that link bases within a sequence can be used to indicate secondary struc-
ture of molecular sequences by representing molecular bonds and links between
pieces of the molecule’s structure. These arcs can be incorporated into sequence
comparison to produce an overall measure of similarity between sequences an-
notated with arcs.

Previous work on aligning arc-annotated sequences has focused on RNA se-
quences, where the arcs represent bonds. Matched arcs are used to enhance or
guide the sequence alignment and improve its similarity score. Structures with
pseudoknots, which require the representative arcs to cross, are usually excluded.
Early work on RNA alignment involved predicting common secondary structure
while aligning the sequences [6]. Corpet and Minchot [2] produced an algorithm
that aligns a new sequence with a bank of aligned sequences, matching the new
sequence to the bank while also preserving as much as possible of the common
secondary structure of the sequence bank. This algorithm runs in time ∈ O(n5)

M. Crochemore, M. Paterson (Eds.): CPM’99, LNCS 1645, pp. 270–280, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Finding Common Subsequences with Arcs and Pseudoknots 271

for sequence length n. The algorithm of Bafna et al. [1] aligns two sequences with
nested arcs only, and uses weights for both sequence and arc matching. However,
it does not detect mismatches for the arcs, and ignores the arc information if
it does not improve the score. It also has worst-case time complexity Θ(n2m2),
where n and m are the sequence lengths. For long sequences, this time complexity
can be too high. This time complexity is also independent of the complexity and
depth of the arc structure, and thus could not exploit this structure to reduce the
time required. Lenhof et al. do include pseudoknots in their graph-based work on
RNA sequence alignment [4]. Their algorithm, however, aligns sequences where
only one sequence has an associated structure. Like the work before it, the links
between base pairs are used to enhance the alignment.

This paper examines the problem of finding the longest common subsequence
of a pair of arc-annotated sequences. The common subsequence must not only
match both sequences, but also preserve all arcs that link subsequence sym-
bols. This analysis specifically looks into the complexity of solving this problem
when the arcs can cross; pseudoknots in sequences can thus be represented.
Different parameters of the problem are examined, determining the conditions
for usable or effective computation of the arc-preserving longest common subse-
quence. This problem is proved to be NP-complete, and it is also W[1]-complete
when parameterized by the desired length of common subsequence. If a bound
on the arc structure’s cutwidth, the number of arcs that cross any position, is
used as the parameter instead, the problem is fixed-parameter tractable. An al-
gorithm is given for this variant that finds the length of the longest common
subsequence in O(9knm) for cutwidth k and input sequence lengths n and m.
For k < log9(max(n, m)), this algorithm’s time complexity is less than that of
earlier work.

2 Problem Definition

The Arc-Preserving Longest Common Subsequence problem for sequences with
crossing arcs is defined as:
Input: target length l and the pair of annotated sequences (S1, P1) and (S2, P2).

These annotated pairs consist of the sequences S1 and S2 over some fixed
alphabet Σ, with arc annotations P1 ⊂ {1, . . . , |S1|}2 and P2 ⊂ {1, . . . , |S2|}2.
Each set of arcs PA is further restricted so that ∀(i1, i2) and (i3, i4) ∈ PA, i1 = i3
if and only if i2 = i4, and i2 6= i3. These conditions require that each sequence
position can be an endpoint for at most one arc; it is linked to at most one other
position. The length of S1 is n and the length of S2 is m.
Output: returns true if and only if there was some mapping MS ⊂ {1, . . . , |S1|}×
{1, . . . , |S2|} between the positions of S1 and S2 such that |MS| = l and

1. the mapping is one-to-one and preserves the order of the subsequence :

∀(i1, j1) ∈ MS and (i2, j2) ∈ MS
i1 = i2 if and only if j1 = j2
i1 < i2 if and only if j1 < j2

272 Patricia A. Evans

2. the arcs induced by the mapping are preserved :
∀(i1, j1) ∈ MS and (i2, j2) ∈ MS, (i1, i2) ∈ P1 if and only if (j1, j2) ∈ P2

3. the mapping produces a common subsequence :
∀(i, j) ∈ MS, S1[i] = S2[j] .

If any of these conditions is not met, false is returned.
This problem is slightly different from those addressed by others. The preser-

vation of the arcs induced by the subsequence is enforced. The algorithm of Bafna
et al. [1] instead allows the arcs to be ignored if they do not contribute posi-
tively to the alignment score. The arcs in that case are used to enhance the
alignment and its value, but do not control it; mismatches between arcs are not
detected, and are thus disregarded. Extensions of the algorithm in this paper can
include weights for symbols and arcs, and the arc weights can be both positive
and negative. Negative arc weights are only possible because the information
represented by the arcs is not ignored by the algorithm. This additional feature
enables the alignment parameters to be adjusted so that the weight of matched
pairs does not overwhelm the entire alignment. The only restriction on this use
of reducing weights is that the reduction needs to be no greater than the smaller
of the two endpoint weights; otherwise, the endpoint will not be matched at all.
Checking for arc mismatches, as this algorithm does, also shows the difference
between matching unbonded bases, and matching a bonded with an unbonded
base. Previous work does not allow for this distinction. Furthermore, previous
work does not allow crossing arcs (or limits them to one sequence only), and
therefore exclude sequences with pseudoknots from these comparisons.

3 Hardness Results

This problem can be analyzed using the techniques from both classical and pa-
rameterized complexity. For classical complexity, it is proved to be NP-complete.
For parameterized complexity, which can show the effect of specific parameters
on the problem’s complexity, it is W[1]-complete when the desired subsequence
length l is used as the parameter.

The parameterized complexity hierarchy [3] is composed of the classes

FPT ⊆ W [1] ⊆ W [2] ⊆ · · · ⊆ W [t] ⊆ · · · ⊆ W [SAT] ⊆ · · · ⊆ W [P]

and uses parametric reductions from problem A to problem B that require the
parameter of B to be a function only in the parameter of A, independent of
problem size. Clique is one problem that is complete for the class W[1] (shown
in [3]).

Lemma. Clique is polynomially reducible and strongly uniformly parametri-
cally reducible to Arc-Preserving LCS.
Reduction. From k-Clique of a graph G = (V, E), where V = {1, 2, . . . , n}.

Finding Common Subsequences with Arcs and Pseudoknots 273

Fig. 1. Example of transformation from Clique to Arc-Preserving LCS.

Construct S1[1..(n2 + 2n)] and P1 as follows:

S1 = (banb)n

P1 = {((u− 1)(n + 2) + 1, u(n + 2))|u ∈ V }∪
{((u− 1)(n + 2) + v + 1, (v − 1)(n + 2) + u + 1)|(u, v) ∈ E}

Construct S2[1..(k2 + k)] and P2 as follows:

S2 = (bakb)k

P2 = {((u− 1)(k + 2) + 1, u(k + 2))|u ∈ V }∪
{((u− 1)(k + 2) + v + 1, (v − 1)(k + 2) + u + 1)|u, v ∈ {1, . . . , k}, u 6= v}
The parameter is l = k2 + 2k, while the maximum sequence length is n′ =

n2 + 2n. Since the length of the sequences is bounded by a polynomial in n, this
is a polynomial reduction. The sequence parameter l is a polynomial only in k
and is independent of n, so this reduction is also a parameterized reduction.

The target subsequence size is the same as the length of the second sequence,
so we are really asking if the arc sequence S2 is a subsequence of the arc sequence
S1. Figure 1 illustrates an example of this reduction.

274 Patricia A. Evans

Proof Sketch. We need to show that the graph G = (V, E) has a clique of size
k if and only if (S1, P1) and (S2, P2) have an arc-preserving common subsequence
of length l = k2 + 2k.
⇒: Let V ′ ⊆ V be a clique in G of size k. Each vertex u ∈ V ′ corresponds
to a segment of S1, banb, and a segment of S2, bakb. If this pair of segments
are matched, they will contribute k + 2 to the length of a common subsequence.
The pair of b symbols are joined by an arc in both segments, so those arcs are
preserved. The a symbols in each segment are linked, in order, to the a symbols
in the other segments that correspond to vertices from the clique V ′. Thus k
of the a symbols of S1, those linked to the other selected segments (plus one
for the segment itself), can also be matched to the corresponding segment of S2

while preserving the arcs. The common subsequence is the concatenation of the
segment pairs’ common subsequences, and has length k(k + 2).
⇐: Let the annotated sequences (S1, P1) and (S2, P2) have an arc-preserving
subsequence of length l = k2+2k. The linked pairs of b symbols in both sequences
enforce the matching of symbols from only k segments of S1, with exactly k + 2
symbols matched from each segment. From these k + 2 symbols, 2 of them are b
symbols. Of the remaining k symbols, one is not linked, while the others are all
linked to symbols from different segments that are also from the selected set of
k segments. Since these arcs were defined to link segments that corresponded to
vertices in G that were joined by an edge, a pair of vertices is linked if and only
if their corresponding segments are linked. The subsequence must preserve the
arcs from (S2, P2) that link all of its k segments. Therefore all selected segments
from S1 are also linked pairwise by arcs, and the set of k corresponding vertices
of the graph G are a clique in G. 2

Theorem 1. Arc-Preserving LCS is NP-complete.
Proof: All the requirements for a solution to the Arc-Preserving LCS problem
can be checked in polynomial time, so it is in NP. It is polynomially reducible
from Clique by the above Lemma, so it is also NP-hard. Thus Arc-Preserving
LCS is NP-complete. 2

Theorem 2. Arc-Preserving LCS is W[1]-complete when parameterized by
desired subsequence length l.
Proof: Arc-Preserving LCS, parameterized by l, is in W[1] since any instance
of the problem can be converted into a decision circuit with weft 1 whose ac-
cepted input assignments of weight l correspond to the arc-preserving common
subsequences of length l. This circuit can be constructed with one input bit for
each possible sequence position match (i, j). Each condition for acceptable input
can be checked with a 2-input gate, and the circuit output can be set to 0 if any
condition is violated, or 1 if all conditions hold.

Clique, which is hard for W[1], is parametrically reducible to Arc-Preserving
LCS (parameterized by l) by the reduction in the Lemma given above. Thus
Arc-Preserving LCS is W[1]-complete for the parameter l. 2

Finding Common Subsequences with Arcs and Pseudoknots 275

4 Sequences with Bounded Cutwidth

4.1 Necessary Data Structures

While the problem is NP-complete, and is also W[1]-complete when parame-
terized by desired subsequence length l, the problem becomes fixed-parameter
tractable if it is instead parameterized by the arc cutwidth. This cutwidth is
defined as the maximum number of arcs that cross or end at any arbitrary po-
sition of the sequence. If both sequences have their cutwidth bounded by some
k, the problem can be solved in time O(f(k)nm) where f(k) is a function in
k independent of both n and m. Sufficient bounds on k will make the problem
tractable.

On initial examination, this problem should be able to be solved by splitting
the tables whenever an initial endpoint is encountered. Restricting the cutwidth
of the sequences, then, should make this problem fixed-parameter tractable.
These tables can be used to store the initial endpoint matches that are made
on the various computation paths, and these paths can then be searched when
a final endpoint is encountered. This searching can determine if any maximum
computation path has matched the initial endpoints that correspond to the final
endpoints encountered. However, this network of paths can, potentially, cover
all 4kn2 positions in the tables, and may need to be searched completely.

Fig. 2. Computation Path Network Example.

The network of computation paths cannot be searched simply using a breadth-
first search technique, nor can we only maintain a list of all arc assignments on
the maximum computation paths that lead to each table entry. Since matching
the final endpoint depends on whether (and to what) the initial endpoint was
matched, the network of paths also includes path combinations that are not
allowed. Symbol matches inside an arc would merge lists that need to be kept
separate. In Figure 2, for example, the entry that matches the two a symbols
brings together two computation paths that match initial endpoint g symbols;

276 Patricia A. Evans

however, the subsequent matching of the final endpoint symbols can only be done
one way for each initial match, not two as the network of paths would indicate.
Looking for an initial match in this network, then, would require searching each
possible path through the 4kn2 different table positions in order to correctly
compute the new table value.

Since searching through the network of paths is very costly, the different valid
computation paths can instead be kept in a tree. Each of the table positions
should have its own tree of all valid computation paths. In order to be able to
minimize the length of the paths in the tree, each position will need to have
its own copy, instead of referencing trees at previous positions. These paths are
kept short by removing initial endpoint matches of arcs that are no longer active
(whose final endpoints have been encountered). This editing reduces the length of
each path to at most k, and the storing of the endpoint matches in a tree means
that all paths to be searched are valid ones. Thus the time to search for an initial
endpoint match is reduced while both the space used and the complexity of the
data structure are increased.

4.2 Bounded Cutwidth Algorithm

The tree structure outlined above is used in the following algorithm that finds
the arc-preserving longest common subsequence for arcs with bounded cutwidth.

Theorem 3. The Arc-Preserving LCS problem, parameterized by cutwidth k,
is Fixed-Parameter Tractable, and can be solved in time O(9knm).
Proof. A solution for the Arc-Preserving LCS problem is found by the following
algorithm.
Algorithm:

Step 1. For each of P1 and P2, partition the set of arcs into k sets, where each
set contains a chain of arcs that do not cross or nest. Number these chains
from 0 through k − 1.

Step 2. For each of (S1, P1) and (S2, P2), look at each subset of the set of chains.
For each subset of chains of P1, create a copy of the sequence S1 with the
initial endpoints of all arcs in those chains removed and replaced by some
x 6∈ Σ. The set of sequences thus created is S1, and is generally indexed by
h1, where h1 =

∑
i∈subset 2i. For (S2, P2), create the set of sequences S2 in

the same way, indexing it using h2.
Step 3. For each combination of h1 and h2, create a two-dimensional table, n×

m, that uses strings S1[h1] and S2[h2]. These tables will be used to calculate
the length of the longest common subsequence. Each table position includes
both a value T (h1,h2)[i, j], the length of the longest common subsequence
so far, and a tree M (h1,h2)[i, j] of the initial arc endpoints matched along
the computation paths that produce that value. These matches between
initial endpoints are tentative assignments that will be checked when the
final endpoints of the arcs are encountered.

Finding Common Subsequences with Arcs and Pseudoknots 277

Step 4. Calculate the longest common arc-preserving subsequence of (S1, P1)
and (S2, P2) by traversing the tables. A table is considered active if one arc
from each of the chains in its subset is active.

At each step, the values for that position in all active tables are calculated.
The trees are also merged and manipulated. This tree data structure needs to
support the following operations.

merge: is applied to a finite list of trees and their corresponding subsequence
length values, and returns the merge of those trees that have the maximum
corresponding values. When the trees are merged, they are copied and also
simplified from the root down by uniting identical children of the same parent
node.

test: looks for a given arc assignment pair in the tree; returns true if it is found,
false otherwise.

prune: given a tree and an arc assignment pair, removes all paths that do not
contain the pair, and then removes the pair itself.

trim: given a tree, an arc number k′, and a flag value, removes all nodes in the
tree that contain an arc assignment that involves an arc with that number
k′. This operation checks either the i or j values, depending on the value of
the flag.

extend: given a tree and an arc assignment pair, add the pair to the tree as its
new root.

The complexity of each of these operations, except for extend, is proportional
to the size of the tree, so ∈ O(|M (h1,h2)[i, j]|). The extend operation runs in
constant time.

These operations are used to keep the trees up to date as the table values
are being calculated. The basic longest common subsequence formula

T [i, j] = max(T [i− 1, j], T [i, j − 1], T [i− 1, j − 1] + w(S1[i], S2[j]))

where

w(x, y) =
{

1 if x = y
0 otherwise

is used to calculate the table values, although it can be changed to any LCS-
based alignment weighting scheme. This calculation is varied when arc endpoints
are encountered, as follows:

1. When an initial arc endpoint is encountered, all tables that include that
arc’s chain in its subset are activated and initialized by copying over needed
values into the preceding row or column.

2. When a final arc endpoint is encountered, the table without the initial end-
point is calculated normally. The other table, where the initial endpoint was
allowed to match, is calculated without matching the final endpoint. These
two tables are then merged to find the maximum. The trees are trimmed to
remove all assignments that use that arc.

278 Patricia A. Evans

3. If a pair of initial endpoints is encountered, one from each sequence, the
algorithm attempts to match their arcs. The tables are activated and initial-
ized as in 1, but one table – that has both initial endpoints – requires the
tree at that position to be extended by adding that arc assignment pair.

4. If a pair of final endpoints is encountered, the algorithm must determine (us-
ing test) if the corresponding pair of initial endpoints are in the tree. If they
are, and the maximum value is produced by matching the final endpoints,
those endpoints are matched and the tree is pruned. Otherwise, the trees
and tables are merged as in 2.

After the table computation, the decision algorithm returns true if and only if the
length of the longest common arc-preserving subsequence, stored in T (0,0)[n, m],
is at least l, and returns false otherwise. This algorithm computes table entries
for up to 4k tables, each table having nm entries.

4.3 Time Complexity Analysis:

The computation of each table entry Mh1,h2 [i, j] takes O(|Mh1,h2(i, j)|) time.
In this algorithm, the trees are kept minimal so that they only store matches of
starting endpoints of currently active arcs.
To find the size of M (h1,h2)[i, j]:

Each path in the tree is a sequence both on matched i values (i′) and on
matched j values (j′). Let p1(i′) be the position of i′ among the starting end-
points of active arcs on S1, so p1(i′) = |{(i1, i2) : (i1, i2) ∈ P1, i1 ≤ i ≤ i2, and
i1 ≤ i′ }|. Similarly, let p2(j′) be the position of j′ among the starting endpoints
of active arcs on S2.

At each position in the tree, replace the label (i′, j′) with (p1(i′), p2(j′)). The
sequences of p1(i′) values and p2(j′) values along any path from root to leaf are
strictly decreasing. The maximum number of nodes in such a tree with (x, y) as
its root is thus given by the recurrence relation

S(1, y) = 1 ∀y and S(x, 1) = 1 ∀x

S(x, y) = 1 +
x−1∑
t=1

y−1∑
r=1

S(t, r) ∀y > 1, ∀x > 1

which converts to
S(x, y) = S(x− 1, y) + S(x, y − 1)

and is equivalent to the closed form

S(x, y) =
(

x + y − 2
x− 1

)
.

Since the root of the entire tree M (h1,h2)[i, j] may be blank with all possible
children, the number of nodes in M (h1,h2)[i, j] is at most

(
r+s

r

)
where r is the

Finding Common Subsequences with Arcs and Pseudoknots 279

number of active arcs from (S1, P1) and s is the number of active arcs from
(S2, P2).

To determine the total size of the trees over all the tables, consider that
both sequences have bounded cutwidth k, and that the algorithm is currently
computing any specific position [i, j] in each of the tables. Each time the tables
are split, half of the tables are allowed to include the new assignment, while the
other half cannot include it. So for each possible r and s, the number of tables
that can have r active arcs from S1 and s active arcs from S2 is

(
k
r

) · (ks). Thus
the total number of tree nodes at position [i, j] over all the 4k tables is at most

S(k) =
k∑

r=0

k∑
s=0

(
k

r

)(
k

s

)(
r + s

s

)
.

This expression can be convoluted to get

S(k) =
k∑

t=0

(
k

t

)2

22t =
k∑

t=0

((
k

t

)
2t

)2

≤
(

k∑
t=0

(
k

t

)
2t

)2

= 9k ,

so the sum over all the tables of the number of tree entries that must be copied
is no more than 9k. An asymptotic estimate for a lower bound on S(k) can be
found by looking at one specific term of the sum, where t = 2k

3 . From this term,

S(k) ≥
((

k
k
3

)
2

2k
3

)2

.

This term can be expanded using factorials(
k!

2k
3 !k

3 !
· 2 2k

3

)2

and estimated using Stirling’s approximation (n! ∼ √
2πn(n

e)n) to get
((

k
k
3

)
2

2k
3

)2

∼ 9k

k
.

This approximation reveals that the upper bound of 9k is very close to S(k); it
can be off by at most a factor of k.

Since S(k) is the upper bound on the total size of the trees for each posi-
tion (r, s) over all tables, and there are nm such positions to be computed, the
algorithm runs in time O(9knm). 2

5 Conclusion

The examination of this problem using classical complexity shows that it is
NP-complete. A parameterized investigation, however, reveals that it is W[1]-
complete for desired subsequence length l, but fixed-parameter tractable for

280 Patricia A. Evans

bounded cutwidth k. Both hardness results come from a single dual-purpose re-
duction. The algorithm presented to show fixed-parameter tractability for k runs
in time ∈ O(9knm). This time complexity means that if the complexity of the
arc structure is bounded by a logarithm of the maximum sequence length n, the
longest arc-preserving common subsequence can be found in time ∈ O(n2m).
This time complexity is an improvement over earlier results, and shows con-
ditions under which the problem becomes tractable. The algorithm given also
handles pseudoknots on both sequences, while previous work does not.

The parameterized analysis indicates that the problem is tractable for se-
quences with arc structure of bounded cutwidth. Different kinds of structures
can be looked at to determine if they meet this restriction, or if they can be
manipulated to meet it. Many RNA structures contain highly repetitive arcs.
This repetition could be exploited to compress the arc structure into something
that has bounded cutwidth. This algorithm can also be extended to work with
weights for both match and mismatch for symbols and arcs. The algorithm de-
tects arc mismatch, so it can apply weight penalties for this, and can also use
negative weights for arcs. Using negative weights can allow for a small reduction
in the score if both symbols of a linked pair are matched; this can alleviate the
sometimes overpowering effect of the weights of matched pairs, allowing other
matches to have more relative effect on the sequence similarity score. The use of
negative arc weights is only possible with an algorithm that preserves induced
arcs, such as the one given in this paper.

References

1. V. Bafna, S. Muthukrishnan, and R. Ravi. Computing similarity between RNA
strings. DIMACS Technical Report 96-30, 1996.

2. F. Corpet and B. Minchot. RNAlign program: alignment of RNA sequences using
both primary and secondary structures. Computer Applications in the Biosciences
10 (1994), 389-399.

3. R. Downey and M. Fellows. Fixed-parameter intractability. Proceedings of the Sev-
enth Annual Conference on Structure in Complexity Theory (1992), 36-49.

4. H. Lenhof, K. Reinert, and M. Vingron. A polyhedral approach to RNA sequence
structure alignment. Proceedings of the Second Annual International Conference on
Computational Molecular Biology (RECOMB 98) (1998), 153-159.

5. S. Needleman and C. Wunsch. A general method applicable to the search for simi-
larities in the amino-acid sequence of two proteins. Journal of Molecular Biology 48
(1970), 443-453.

6. D. Sankoff. Simultaneous solution of the RNA folding, alignment, and protosequence
problems. SIAM Journal of Applied Mathematics 45 (1985), 810-825.

7. T. Smith and M. Waterman. Identification of common molecular subsequences.
Journal of Molecular Biology 147 (1981), 195-197.

Computing Similarity between RNA Structures?

Kaizhong Zhang1, Lusheng Wang2, and Bin Ma3

1 Dept. of Computer Science, University of Western Ontario,
London, Ont. N6A 5B7, Canada

kzhang@csd.uwo.ca
2 Dept. of Computer Science, City University of Hong Kong,

83 Tat Chee Avenue, Kowloon, Hong Kong
lwang@cs.cityu.edu.hk

3 Dept. of Mathematics, Peking University,
Beijing 100871, P.R. China
bma@sxx0.math.pku.edu.cn

Abstract. The primary structure of a ribonucleic acid (RNA) molecule
is a sequence of nucleotides (bases) over the alphabet {A, C, G, U}. The
secondary or tertiary structure of an RNA is a set of base-pairs (nu-
cleotide pairs) which forms bonds between A − U and C − G. For sec-
ondary structures, these bonds have been traditionally assumed to be
one-to-one and non-crossing.
This paper considers a notion of similarity between two RNA molecule
structures taking into account the primary, the secondary and the ter-
tiary structures. We show that in general this problem is NP-hard for
tertiary structures. We present algorithms for the case where at least one
of the RNA involved is of secondary structures. We then show that this
algorithm might be used to deal with the practical application. We also
show an approximation algorithm.

1 Introduction

Ribonucleic Acid (RNA) is an important molecule which performs a wide range
of functions in biological system. In particular it is RNA (not DNA) that contains
genetic information of virus such as HIV and therefore regulates the functions
of such virus. RNA has recently become the center of much attention because of
its catalytic properties, leading to an increased interest in obtaining structural
information.

It is well known that secondary and tertiary structural features of RNAs are
important in the molecular mechanism involving their functions. The presump-
tion, of course, is that to a preserved function there corresponds a preserved
molecular confirmation and, therefore, a preserved secondary and tertiary struc-
ture. Therefore the ability to compare RNA structures is useful.

In RNA secondary or tertiary structure, a bonded pair of bases (base-pair) is
usually represented as an edge between the two complementary bases involved
? Research supported partially by the Natural Sciences and Engineering Research

Council of Canada under Grant No. OGP0046373.

M. Crochemore, M. Paterson (Eds.): CPM’99, LNCS 1645, pp. 281–293, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

282 Kaizhong Zhang, Lusheng Wang, and Bin Ma

in the bond. It is assumed that any base participates in at most one such pair.
For the secondary structure, the edges of the bonded pairs are non-crossing.

Following the notion of similarity in comparing sequences, we define a sim-
ilarity between two RNA molecule structures taking into account the primary,
the secondary and the tertiary structures.
Results
We show that computing this similarity between RNA tertiary structures is NP-
complete. We present an algorithm for the case where at least one of the RNA
involved is of secondary structure. We then show this algorithm could be used
to compare tertiary structures in practical application Finally we will give an
approximation algorithm.
Related work
Since the secondary structure appears as tree-like structure, there are works
considering comparison using tree comparison [7,4,5,8,3]. However these methods
do not directly use base-paired nucleotides and unpaired nucleotides. Instead
loops and stems (stacked pairs) are used as the basic unit making it difficult to
define the semantic meaning in the process of converting one RNA into another.
To overcome this difficulty, the method we propose in this paper directly use
base-paired and unpaired nucleotides in the representation and apply some basic
operations on them.

Another line of works are primary structure based where the comparison is
basically done on the primary structure while trying to incorporate secondary
structure data [1,2]. The weakness of this approach is that it does not treat a
base-pair as a whole entity. For example, in the comparison of two RNAs, a
base-pair from one RNA can have one nucleotide deleted while the other nu-
cleotide matched to nucleotide (unpaired or even paired) in the other RNA. Our
method treat base-pair as a unit, it can be matched to another base-pair, it
can be deleted, or it can be inserted. This is closer to the spirit of the compar-
ative analysis method currently being used in the analysis of RNA secondary
structures either manually or automatically.

2 Comparing Two RNA Structures

2.1 RNA Structures and Basic Operations

The primary structure of a ribonucleic acid (RNA) molecule is a sequence of nu-
cleotides (bases) over the four-letter alphabet

∑
= {A, C, G, U}. The secondary

or tertiary structure of an RNA is a set of base-pairs (nucleotide pairs) which
formed bonds between A−U and C −G. Following Zuker [14,15,16], we assume
a model where there is no knots in the secondary structure. This means that
for the secondary structure, the bonds are non-crossing. For tertiary structure,
there is no restriction of non-crossing.

Given an RNA structure R, we use R[i] to represent the ith nucleotide of R.
We use R[i..j] to represent the sequence of nucleotides from R[i] to R[j].

Computing Similarity between RNA Structures 283

We use S(R) to represent the set of structural elements consisting of both
its set of base-pairs and the remaining unpaired nucleotides.

S(R) = {(i, j)|i < j and (R[i], R[j]) is a base pair in R}
∪{(i, i)|R[i] is not involved in any base pair in R}

We use S(R)[i..j] to represent the set of structural elements in sequence R[i..j].

S(R)[i..j] = {r|r = (k, l) ∈ S(R), i ≤ k, l ≤ j}

For r = (i, j) ∈ S(R), we use labelR(r) to represent label of r in R. If i = j, then
labelR(r) = R[i] = R[j], otherwise labelR(r) = R[i]R[j]. For r = (i, j) ∈ S(R),
i and j are often called the 5′ end and 3′ end of r. We define left(r) = i and
right(r) = j.

Following the tradition in sequence comparison [6,9,10], we define three oper-
ations, relabel, delete, and insert, on RNA structures. For a given RNA structure
R, each operation can be applied to either a base-pair in S(R) or an unpaired
base. Relabelling a base-pair is to replace one base-pair in S(R) with another.
This means that at the sequence level, two bases may be changed at the same
time. Deleting a base-pair is to delete the pair from S(R). At the sequence level,
this means to delete two bases at the same time. Inserting a base-pair is to insert
a new base-pair into S(R). At the sequence level, this means to insert two bases
at the same time. Relabelling an unpaired base is to replace it with another base.
Deleting an unpaired base is to delete the base from the sequence. Inserting a
base is to insert a new base into the sequence as an unpaired base. Note that
there is no relabel operation that can change a base-pair to an unpaired base or
vice versa.

Following [11,13], we represent an edit operation as a → b, where a and b
are either λ or labels of base-pair from {A, C, G, U}× {A, C, G, U}, or unpaired
base from {A, C, G, U}.

We call a → b a change operation if a 6= λ and b 6= λ; a delete operation if
b = λ; and an insert operation if a = λ.

Let S be a sequence s1, ..., sk of edit operations. An S-derivation from RNA
structure A to RNA structure B is a sequence of RNA structures A0, ..., Ak such
that A = A0, B = Ak, and Ai−1 → Ai via si for 1 ≤ i ≤ k.

Let γ be a cost function which assigns to each edit operation a → b a
nonnegative real number γ(a → b). We constrain γ to be a distance metric.
That is, i) γ(a → b) ≥ 0, γ(a → a) = 0; ii) γ(a → b) = γ(b → a); and iii)
γ(a → c) ≤ γ(a → b) + γ(b → c).

We extend γ to a sequence of edit operations S by letting γ(S) =
∑|S|

i=1 γ(si).
The edit distance between two RNA structures is defined by considering the

minimum cost edit operation sequence that transforms one structure to the other.
Formally the edit distance between R1 and R2 is defined as:

D(R1, R2) = min
S

{γ(T) | T is an edit operation sequence taking S(R1) to

S(R2)}

284 Kaizhong Zhang, Lusheng Wang, and Bin Ma

2.2 Mapping between RNA Structures

Let r = (rl, rr) and s = (sl, sr) be two elements in S(R) of an RNA R, we define
the relation between r and s as follows. We say r is before s if rr < sl. We say r
is inside s if sl < rl and rr < sr. We say r is cross-before s if rl < sl and rr < sr.

Let R1 and R2 be two RNA structures. We define a triple (M, R1, R2) to be
a mapping from R1 to R2, where M is a binary relation on S(R1)× S(R2) such
that

(1) For any (r, s) in M ,
r is a base-pair in R1 if and only if s is a base-pair in R2.

(2) For any pair of (r1, s1) and (r2, s2) in M ,
(a) r1 = r2 if and only if s1 = s2 (one-to-one)
(b) r1 is before r2 if and only if s1 is before s2.
(c) r1 is inside r2 if and only if s1 is inside s2.
(d) r1 is cross before r2 if and only if s1 is cross before s2.

We will use M instead of (M, R1, R2) if there is no confusion. Let M be a
mapping from R1 to R2. Then we can similarly define the cost of M :

γ(M) =
∑

(r,s)∈M γ(labelR1(r) → labelR2(s))
+

∑
r 6∈M γ(labelR1(r) → λ) +

∑
s6∈M γ(λ → labelR2(s))

Mappings can be composed. Let M1 be a mapping from R1 to R2 and M2

be a mapping from R2 to R3. Define

M1 ◦M2 = {(r, t) | ∃s s.t. (r, s) ∈ M1 and (s, t) ∈ M2}.

Lemma 1. 1) M1 ◦ M2 is a mapping between R1 and R3. 2) γ(M1 ◦ M2) ≤
γ(M1) + γ(M2).

Proof. 1) follows from the definition of mapping. Let us check condition (2) only.
Suppose that (r1, t1) and (r2, t2) are in M1 ◦M2, by definition of mapping, there
exist s1 and s2 such that (r1, s1) and (r2, s2) are in M1 and (s1, t1) and (s2, t2)
are in M2. If r1 is before r2, then by the definition of mapping, s1 is before s2.
Therefore t1 is before t2, again by the definition of mapping. Similarly if r1 is
inside r2 or r1 is cross-before r2, then if t1 is inside t2 or t1 is cross-before t2.

2) Let M1 be the mapping from R1 to R2, M2 be the mapping from R2 to R3,
and M1 ◦M2 be the composed mapping from R1 to R3. Three general situations
occur. (r, s) ∈ M1 ◦ M2, r 6∈ M1, or s 6∈ M2. In each case this corresponds
to an edit operation γ(x → y) where x and y may be labels or may be λ.
In all such cases, the triangle inequality on the distance metric γ ensures that
γ(x → y) ≤ γ(x → z) + γ(z → y). ut

The relation between a mapping and a sequence of edit operations is as
follows:

Computing Similarity between RNA Structures 285

. GGGG.... GGGGGGGGGGGGCCCCCCCCCCCC UUUUUUUUUUUU AAAAAAAA AAAA
U U

1 2 nU

Fig. 1. RNA structure 1

Lemma 2. Given S, a sequence s1, . . . , sk of edit operations from R1 to R2,
there exists a mapping M from R1 to R2 such that γ(M) ≤ γ(S). Conversely,
for any mapping Me, there exists a sequence of edit operations such that γ(S) =
γ(M).

Proof. The first part can be proved by induction on k. The base case is k = 1.
This case holds because any single edit operation preserves the mapping con-
ditions. In general case, let S1 be the sequence s1, . . . , sk−1 of edit operations.
There exist a mapping M1 such that γ(M1) ≤ γ(S1). Let M2 be the mapping
for sk. From lemma 1, we have γ(M1 ◦M2) ≤ γ(M1) + γ(M2) ≤ γ(S). ut

Based on the lemma, the following theorem states the relation between the
distance and the mappings.

Theorem 1. D(R1, R2) = min
M

{γ(M) | M is a mapping from R1 to R2}

Proof. Immediately from lemma 2. ut

3 NP-Hard Result

We now consider the problem of comparing RNA structures where both struc-
tures are tertiary structures. We show that this is in general NP-hard.

We will reduce the 3-SAT problem to this problem.
Problem of 3-SAT
Let S = C1 · C2...Cn, where Ci = (vi1 ∪ vi2 ∪ vi3), be an instance of 3-SAT

problem. We will construct two RNA structures R1 and R2 as in Figure 1 and
Figure 2.

In R1, there are n segments each of which is enclosed by four base pairs.
These base pairs are all AU pairs. And each segment is connected to every other

286 Kaizhong Zhang, Lusheng Wang, and Bin Ma

.

AAAA UUAA UUAA UUUU AAAA UUAA UUAA UUUU

Fig. 2. RNA structure 2

segment by four base pairs of CG type. Note that the number of base pairs in
R1 is 4 · n · (1 + (n− 1)/2).

In R2, for each vik
, there is a corresponding segment which is enclosed by

two base pairs of AU type. Each clause Ci is then represented by segments of
vi1 , vi2 , vi3 and is enclosed by another two base pairs of AU type.

We now consider base pairs between segments in R2. For each vik
, define sik

as follows.

sik
= {vjl

|i 6= j and vjl
is not complement of vik

}

For each vjl
in sik

there are four bases in the segment for vik
. If j < i then

these bases are G’s, otherwise these are C’s. Suppose that vjl
and vgh

are in sik
,

then the bases for vjl
is before the bases for vgh

if either j > g or j = g and
l > h. Note that if vjl

is in sik
then vik

is also in sjl
. Now suppose that i < j,

then the bases in segment vik
for vjl

are C’s and the bases in segment vjl
for

vik
are G’s. In the RNA structure R2, they form base pairs. Figure 3 shows an

example involving two clauses. Let N be the number of base pairs in R2, then
N = 8 · n + 2 ·∑n

i=1

∑3
k=1 |sik

|.
It is clear that R1 and R2 can be constructed in polynomial time from an

instance of 3-SAT problem S. In the following, we assume that each operation
has unit cost. We will show that S can be satisfied if and only if D(R1, R2) =
N − 4 · n · (1 + (n− 1)/2).

Let S be an instance of 3-SAT problem and R1 and R2 be as in Figure 1 and
Figure 2. The following lemmas give the relationship between S and D(R1, R2).

Lemma 3. If S can be satisfied, then D(R1, R2) = N − 4 · n · (1 + (n− 1)/2).

Proof. If S can be satisfied, then for each clause Ci there is at least one vik
whose

value is true. Consider R2, for each clause, we can first delete any segment which
does not correspond to vik

and its enclosing base pairs. For the segment of vik
,

we can delete the bases which base paired with these segments that have already
been deleted. The resulting structure after these deletions is exactly the same as
R1. Therefore D(R1, R2) = N − 4 · n · (1 + (n− 1)/2) since the number of base
pairs in R2 is N and in R1 is 4 · n · (1 + (n− 1)/2). ut

Lemma 4. If D(R1, R2) = N − 4 · n · (1 + (n− 1)/2), then S can be satisfied.

Computing Similarity between RNA Structures 287

-- -

- --
S = (X+Y+Z)(X+Y+Z)

X Y Z X Y Z

uuaa gggggggg uuuuuuuuccccccccaaaa uuaa uuaacccccccc cccccccc aaaa gggggggg uuaagggggggg

Fig. 3. An example

Proof. In this case, every base pair in R1 is in the optimal mapping M . In
addition, each base pair in R1 is matched to an identical base pair in R2. This
means that the four base pairs enclosing each segment must map to four base
pairs for each clause in R2. The only possibility for this to happen is that for
each clause two (out of three) segments have to be deleted. Therefore mapping
M in R2 keeps one variable in each clause. And this variable is connected to
all the variables left in other clauses by means of base pairing. So for any two
variables left there is no conflict. Hence we can assign the value true to all the
variables left and S is satisfied. ut

Theorem 2. The problem of determining if D(R1, R2) ≤ k is NP-complete.

Proof. This problem is clearly in NP since one can guess a mapping in R1 and
R2 and check to see if the cost is less or equal to k or not.

By lemma 3 and lemma 4, S is satisfied if and only if D(R1, R2) = N − 4 ·
n · (1 + (n− 1)/2). Therefore this problem is NP-hard.

Hence this problem is NP-complete. ut

288 Kaizhong Zhang, Lusheng Wang, and Bin Ma

4 Algorithms

When both RNAs are secondary structures, since there is no crossing, we can
represent RNA structures as ordered forests and then use the tree edit distance
algorithm to solve this problem [12,13].

We now consider the case where at most one of the RNA involved is tertiary
structure. We present an algorithm which solves this problem An extension of
our algorithm can handle the case where both RNAs are tertiary structures with
H-type pseudo-knots.

4.1 Properties

We use a bottom-up approach. We consider smaller substructures first and
eventually consider the whole structure. We can now consider how to compute
D(R1[l1..r1], R2[l2..r2]).

Let S1[1..m] be an array containing pairs in S(R1)[l1..r1] sorted by 3′ end.
Let S2[1..n] be an array containing pairs in S(R2)[l2..r2] sorted by 3′ end.

Let S1[i] = (s1, t1) and S2[j] = (s2, t2), we define left1[i], cross left1[i]
and cross weight1[i] as follows. left2[j], cross left2[j] and cross weight2[j] are
defined similarly.

left1[i] =
{

max{k} S1[k]’s 3′ end is less than s1

0 if no such k exist

cross left1[i] =
{

1 if there exist a k < i, such that S1[k] cross before S1[i]
0 if no such k exist

cross weight1[i] =
∑

1≤k<i,S1[k]cross beforeS1[i]

γ(labelR1(S1[i]) → λ)

Again let S1[i] = (s1, t1) and S2[j] = (s2, t2), we now define D1(i, j) and
D2(i, j) as follows.

D1(i, j) = D(R1[l1..t1], R2[l2..t2])

D2(i, j) = D(R1[s1..t1], R2[s2..t2])

Lemma 5. If left1[i] 6= 0, left2[j] 6= 0, cross left[i] 6= 0, or cross left[j] 6= 0,
then

D1(i, j) = min

D1(i− 1, j) + γ(labelR1(S1[i]) → λ)
D1(i, j − 1) + γ(λ → labelR2(S2[j]))

D1(left1[i], left2[j]) +
D2(i, j)
+cross weight1[i] + cross weight2[j]

Computing Similarity between RNA Structures 289

Proof. Let S1[i] = (s1, t1) and S2[j] = (s2, t2). Consider the best mapping be-
tween R1[l1..t1] and R2[l2..t2]. If S1[i] = (s1, t1) is not in the mapping, then
D1(i, j) = D1(i − 1, j) + γ(labelR1(S1[i]) → λ). If S2[j] = (s2, t2) is not in
the mapping, then D(i, j) = D1(i, j − 1) + γ(λ → labelR2(S2[j])). If both
S1[i] = (s1, t1) and S2[j] = (s2, t2) are in the mapping, then they should map to
each other by the definition of mapping. In this case, since one of the structures
is a secondary structure, any base pair cross before S1[i] or S2[j] will not be in
the mapping and should be deleted. Therefore, if left1[i] 6= 0, or left2[j] 6= 0,
D(i, j) = D1(left1[i], left2[j]) + D2(i, j) +cross weight1[i] + cross weight2[j].
If left1[i] = 0 and left2[j] = 0, and cross left[i] 6= 0, or cross left[j] 6= 0, then
D(i, j) = D2(i, j) +cross weight1[i] + cross weight2[j]. If we define D(0,0)=0,
then we can combine the above two cases. Note that one of the cross weights is
zero since in secondary structure, there is no crossing. Also if S1[i] and S2[j] are
both single bases, both cross weights are zero. ut

Lemma 6. If left1[i] = 0, left2[j] = 0, cross left[i] = 0, and cross left[j] = 0,
then

D1(i, j) = min

D1(i− 1, j) + γ(labelR1(S1[i]) → λ)
D1(i, j − 1) + γ(λ → labelR2(S2[j]))
D1(i− 1, j − 1) + γ(labelR1(S1[i]) → labelR2(S2[j]))

Proof. Let S1[i] = (s1, t1) and S2[j] = (s2, t2). Consider the best mapping be-
tween R1[l1..t1] and R2[l2..t2]. The first two cases are similar to lemma 5. For
the last case, since there is no pair before or cross before S1[i] or S2[j], S1[k],
1 ≤ k < i, is inside S1[i] and S2[k], 1 ≤ k < j, is inside S2[j]. Therefore D1(i, j)
= D1(i − 1, j − 1) +γ(labelR1(S1[i]) → labelR2(S2[j])) +cross weight1[i] +
cross weight2[j]. ut

From the above lemmas, we can compute D(R1, R2) using bottom up ap-
proach. Moreover, it is clear that we do not need to compute all D(R1[l1..r1],
R2[l2..r2]). Since we only use D2(i, j) in lemma 5 and 6, we only need to compute
these D(R1[l1..r1], R2[l2..r2]) such that (l1, r1) is a base pair in R1 and (l2, r2) is
a base pair in R2. Furthermore, by lemma 6, if (l1, r1) and (l1+1, r1−1) are both
base pairs in R1 and (l2, r2) and (l2 + 1, r2 − 1) are both base pairs in R2, then
we only need to compute D(R1[l1..r1], R2[l2..r2]). D(R1[l1..r1], R2[l2+1..r2−1]),
D(R1[l1 + 1..r1 − 1], R2[l2..r2]), and D(R1[l1 + 1..r1 − 1], R2[l2 + 1..r2 − 1]) will
be by-product of the computation of D(R1[l1..r1], R2[l2..r2]).

These base pairs are called stacked pairs. A stem in an RNA R is a set of
stack pairs of maximum size. More formally, we say s = (i, j, k) is a stem in
R(S) if (i, j), (i + 1, j − 1), ...(i + k − 1, j − k + 1) are all base pairs in R(S) and
(i− 1, j + 1) and (i + k, j − k) are not base pairs in R(S).

4.2 Algorithm

Given R1 and R2, we can first compute sorted stem lists L1 for R1 and L2 for R2.
It follows from the above discussion that, for each pair of stems L1[i] = (i1, j1, k1)

290 Kaizhong Zhang, Lusheng Wang, and Bin Ma

To compute D(R1[i1, j1], R2[i2, j2])

compute a sorted list S1 of base pairs inside (i1, j1);
compute a sorted list S2 of base pairs inside (i2, j2);

compute left1[] and left2[];
compute cross left1[] and cross left2[];
compute cross weight1[] and cross weight2[];

D1(0, 0) = 0
for i := 1 to |S1|

for j := 1 to |S2|
if left1[i] 6= 0 or cross left1[i] 6= 0 or

left2[j] 6= 0 or cross left2[j] 6= 0 then
Compute D1(i, j) as in Lemma 5

else
Compute D1(i, j) as in Lemma 6

Fig. 4. Procedure: Computing D(R1[i1, j1], R2[i2, j2])

and L2[j] = (i2, j2, k2), we have to compute D(R1[i1, j1], R2[i2, j2]). Figure 5
shows the algorithm. We use lemma 5 and 6 to compute D(R1[i1, j1], R2[i2, j2]).
Figure 4 shows this computation.

Let R1[1..m] and R2[1..n] be the two given RNA structures. Let stem(R1)
and stem(R2) be the number of stems in R1 and R2 respectively. The time com-
pute D(R1[i1, j1], R2[i2, j2]) is bounded by O(|S(R1)|×|S(R2)|). Since |S(R1)| <
m and |S(R2)| < n, the time complexity of the algorithm is O(stem(R1) ×
stem(R2) × m × n). The space complexity of the algorithm is O(|S(R1)| ×
|S(R2)|) = O(m× n).

Note that when one of the RNA is secondary structure, this algorithm com-
pute the optimal solution of the problem. This algorithm can be modified to han-
dle the case where the input RNAs are tertiary structures with H-type pseudo-
knots (a stem crosses with at most one other stem).

If we represent the secondary structure by a forest, then by using the tech-
nique of Klein [3] we can compute similarity between a secondary structure and
a tertiary structure in O(m2n log n) time where m ≤ n.

Note also that since the number of tertiary interactions is relatively small
compared with the number of secondary interactions, we can also use this al-
gorithm to compute the similarity when both structures are tertiary structures.
Essentially the algorithm tries to find the best secondary structures to match and
delete tertiary interactions. Although this is not an optimal solution, in prac-
tice it would produce a reasonable result by matching most of the base pairs. A

Computing Similarity between RNA Structures 291

Input: R1[1..m] and R2[1..n].

Compute a sorted (by 3′ end) stem list L1 for R1.
Compute a sorted (by 3′ end) stem list L2 for R2.

for i := 1 to |L1|
for j := 1 to |L2|

let L1[i] = (i1, j1, k1)
let L1[j] = (i2, j2, k2)
compute D(R1[i1, j1], R2[i2, j2])

compute D(R1[1, m], R2[2, n])

Fig. 5. An algorithm: Computing D(R1, R2)

post-processing step can be applied to add some matching tertiary interactions
which satisfy the mapping constraints.

5 Approximation Algorithms

In this section, we consider a maximization version of the problem. Let M be a
mapping from R1 to R2. The value δ(M) of M is defined to be the number of
identical pairs of base-pairs in M . Suppose that we define γ(a, b) to be 0 if a and
b are identical; 2 if a and b are non-identical base-pairs; and 1 if one of them is λ.
Then δ(M) + γ(M) = n1 + n2, where n1 and n2 are the number of base-pairs in
S(R1) and S(R2). Instead of finding a M with the smallest cost γ(M), we want
to find a M with the largest value δ(M). Obviously, the maximization version
is also NP-complete.

We give an ratio-(b − 1) + 2
b+1 approximation algorithm for the case where

each base-pair crosses with at most b other base-pairs. Due to space limitation,
we only present the basic idea here.

Our basic idea is as follows: We start with an arbitrary base-pair (i, j) in
S(R1) and consider (i, j) and the other at most b base-pairs (i1, j1), (i2, j2),
. . ., and (ib, jb) crossing (i, j) in S(R1). Call the b + 1 base-pairs (i, j), (i1, j1),
(i2, j2), . . ., and (ib, jb) a b-component for S(R1). We use (i′, j′), (i′1, j

′
1), (i′2, j

′
2),

. . ., and (i′b, j
′
b) to denote a b-component for S(R2). For each pair of subsequences

R1[p..q] and R2[p′..q′], we consider all pairs of b-components for them. A match
between the two b-components contains k + 1 matched pairs of base-pairs such
that (i, j) matches (i′, j′) and the k + 1 matched pairs of base-pairs satisfy
(a)-(d) in the definition of a mapping. (i, j) and (i′, j′) form an imposed pair
of base-pairs. The k + 1 base-pairs form 2(k + 1) positions in both R1[p..q] and
R2[p′..q′] that decompose both R1[p..q] and R2[p′..q′] into 2k+3 segments, called
matched segments. For each pair of b-components for R1[p..q] and R2[p′..q′], we

292 Kaizhong Zhang, Lusheng Wang, and Bin Ma

try all possible matches between the two b-components. For each match, we
forbid any other base-pairs not in the b-components to cross any base-pair in
the b-components. The match between the corresponding matched segments are
computed recursively. (See Figure 6.)

�� �� �� �� �� #
����

�� �� # �� �� #

qii3 j3

(a)R1 (b)R2

p q p′ q′

p′ q′p

i3 j3i ji1 j1 i′
3 i′ j′j′

3i′
1 j′

1

(c) (d)

i′
3 i′ i′

1 j′
3 i′

2 j′ j2 j3i1 i2 j j2 j3

Fig. 6. (a) the set of specified links for R1. (b) the set of specified links for R2.
(c) the preserved links for R1 in a match. (d) the preserved links for R2 in a
match. (i, j) matches (i′, j′) and (il, jl) matches (i′l, j

′
l) for l = 1 and 3. Such a

match form 7 matched segments for both R1 and R2.

References

1. V. Bafna, S. Muthukrishnan, and R. Ravi, ‘Comparing similarity between RNA
strings’, Proc. Combinatorial Pattern Matching Conf. 95, LNCS 937, pp.1-14, 1995

2. F. Corpet and B. Michot, ‘RNAlign program: alignment of RNA sequences using
both primary and secondary structures’, Comput. Appl. Biosci vol. 10, no. 4, pp.389-
399, 1995

3. P.N. Klein, ‘Computing the edit-distance between unrooted ordered trees’, Proc.
Annual European Symposium on Algorithms 98 LNCS 1461, pp.91-102, 1998.

4. S.Y. Le, R. Nussinov and J.V. Mazel, ‘Tree graphs of RNA secondary structures
and their comparisons’ Comput. Biomed. Res. vol. 22, pp.461-473, 1989

5. S.Y. Le, J. Owens, R. Nussinov, J.H. chen, B. Shapiro, and J.V. Mazel, ‘RNA
secondary structures: comparisons and determination of frequently recurring sub-
structures by consensus’, Comput. Appl. Biosci vol. 5, pp.205-210, 1989

6. S.E. Needleman and C.D. Wunsch, ‘A general method applicable to the search for
similarities in the amino-acid sequences of two proteins’, J. Mol. Bio., 48, pp.443-
453, 1970

7. B. Shapiro, ‘An algorithm for comparing multiple RNA secondary structures’, Com-
put. Appl. Biosci vol. 4, no. 3, pp.387-393, 1988

8. B. Shapiro and K. Zhang, ‘Comparing multiple RNA secondary structures using
tree comparisons’, Comput. Appl. Biosci vol. 6, no.4, pp.309-318, 1990

Computing Similarity between RNA Structures 293

9. T.F. Smith and M.S. Waterman, ‘The identification of common molecular subse-
quences’, J. Mol. Bio. 147, pp.195-197, 1981

10. T.F. Smith and M.S. Waterman, ‘Comparison of biosequences’, Adv. in Appl. Math.
2, pp.482-489, 1981

11. K.C. Tai, ‘The tree to tree correction problem’, JACM vol.26, no.3, pp.422-433,
1979

12. Kaizhong Zhang, ‘Computing similarity between RNA secondary structures’,
Proceedings of IEEE International Joint Symposia on Intelligence and Systems,
Rockville, Maryland, May 1998, pp. 126-132.

13. K. Zhang and D. Shasha, ‘Simple fast algorithms for the editing distance between
trees and related problems’, SIAM J. Computing vol. 18, no. 6, pp.1245-1262, 1989

14. M. Zuker, ‘On finding all suboptimal foldings from of an RNA molecule’, Science
244, pp.48-52, 1989

15. M. Zuker and D. Sankoff, ‘RNA secondary structure and their prediction’, Bull.
Math. Biol. 46, pp.591-621, 1984

16. M. Zuker and P. Stiegler, ‘Optimal computer folding of large RNA sequences using
thermodynamics and auxiliary information’, Nucleic Acid Res. 9, pp.133-148, 1981

Author Index

Akutsu, T 212
Arikawa, S 1, 37
Baeza-Yates, R 163, 243
Batzoglou, S 66
Ben-Dor, A 88
Brodal, G S 134
El-Mabrouk, N 78
Evans, PA 270
Fujiyama, A 212
Hirschberg, DS 115
Iliopoulos, C S 123
Istrail, S 66
Kanaya, K 212
Karhumäki, J 186
Kida, T 1
Lancia, G 101
Laporte, E 196
Liben-Nowell, D 50
Lyngsø, R B 134
Ma, B 281
Navarro, G 14, 163, 243
Ohyama, A 212

Park, K 123
Pe’er, I 88
Pedersen, C N S 134
Plandowski, W 186
Raffinot, M 14
Ravi, R 101
Ristov, S 196
Rytter, W 186
Sankoff, D 78
Sim, J S 123
Shamir, R 88
Sharan, R 88
Shibata, Y 37
Shinohara, A 1, 37
Smyth, W F 123
Stoye, J 134
Takeda, M 1, 37
Wang, L 281
Wang, Z 258
Wenk, C 223
Yokoo, H 150
Zhang, K 258, 281

	Lecture Notes in Computer Science
	Foreword
	Programme Committee
	Table of Contents
	Shift-And Approach to Pattern Matching in LZW Compressed Text
	Introduction
	Preliminaries
	LZW Compression
	The Shift-And Pattern Matching Algorithm

	Proposed Algorithm
	Experimental Results
	Extensions
	Generalized Pattern Matching
	Pattern Matching with k Mismatches
	Multiple Pattern Matching

	Conclusion

	A General Practical Approach to Pattern Matching over Ziv-Lempel Compressed Text
	Introduction
	String Matching on Blocks
	Description of a Letter
	Concatenating Two Blocks
	Updating the Search State

	A Bit-Parallel Implementation
	LZ78 Compression
	Compression Algorithm
	Pattern Matching in LZ78 Compressed Files
	Analysis

	LZ77 Compression
	Compression Algorithm
	Pattern Matching in LZ77 Compressed Files
	Analysis and Improvements

	A New Hybrid Compression Algorithm
	Experimental Results
	Compression Performance
	Search Algorithms

	Conclusions

	Pattern Matching in Text Compressed by Using Antidictionaries
	Introduction
	Preliminaries
	Text Compression Using Antidictionary
	Decoder without $varepsilon $-Moves

	Algorithm in Detail
	Proof of Theorem 2
	Proof of Theorem 3

	Concluding Remarks

	On the Structure of Syntenic Distance
	Introduction
	Notational Preliminaries and Previous Heuristics
	An Analysis of $@mathcal {F}$
	A Possible Improvement to $@mathcal {F}$
	Moves between Connected Components
	Non-redundancy and Monotonicity
	A Lower Bound on Synteny
	Syntenic Diameter
	A Preliminary Implementation
	Conclusions and Future Work

	Physical Mapping with Repeated Probes: The Hypergraph Superstring Problem
	Introduction and Previous Work
	Background
	Physical Mapping
	The Lander-Waterman Model
	The Hypergraph Superstring Problem

	Computational Complexity of the Hypergraph Superstring Problems
	Algorithms
	Experimental Results
	Future Work

	Hybridization and Genome Rearrangement
	Introduction
	Resolution of Tetraploidy; Ancestral Synteny Unknown
	Formalization
	Algorithm

	Resolution of Tetraploidy; Ancestral Synteny and Gene Order Inferred
	The H-P Algorithm and a Heuristic for $n_{rm G}$
	An Upper Bound for the Heuristic
	A Lower Bound for $n_{rm G}$

	Hybridization through Interspecific Fertility

	On the Complexity of Positional Sequencing by Hybridization
	Preliminaries
	A Linear Algorithm for 2-Positional Eulerian Path
	3-Positional Eulerian Path Is NP-Complete
	Outline of the Construction
	Construction in Detail

	3-Positional SBH Is NP-Complete

	GESTALT: Genomic Steiner Alignments
	Introduction
	Edit Distance
	The Sum--of--Pairs Alignment Problem
	The Tree Alignment Problem
	A Tree-Based Progressive Alignment Method
	GESTALT Program Suite

	Procedure Overview
	Tree Computation
	Solution of Steiner Problems
	Optimal Labeling by Dynamic Programming
	Reoptimization

	Computational Experiences

	Bounds on the Number of String Subsequences
	Problem Definition
	Upper Bounds for $|D_{t}(X)|$
	A Lower Bound for $|D_{t}(X)|$
	The Average Number of Subsequences

	Approximate Periods of Strings
	Introduction
	Preliminaries
	Measures

	Problem Definitions
	Algorithms and NP-Completeness
	Problem 1
	Problem 2
	Problem 3

	Finding Maximal Pairs with Bounded Gap
	Introduction
	Preliminaries
	Pairs with Upper and Lower Bounded Gap
	Data Structures
	Algorithms

	Pairs with Lower Bounded Gap
	Conclusion

	A Dynamic Data Structure for Reverse Lexicographically Sorted Prefixes
	Introduction
	Proposed Data Structure and Its Construction
	On-Line Computation of the Shortest Unique Substrings with an Application to Entropy Estimation
	Implementing the Context-Sorting Text Compression Algorithm
	Other Applications
	Conclusion

	A New Indexing Method for Approximate String Matching*
	Introduction
	Combining Suffix Trees and Pattern Partitioning
	DFS Using a Bit-Parallel Automaton
	Partitioning the Pattern

	Analysis
	Searching One Piece
	Pattern Partitioning
	The Limits of the Method

	Experimental Results
	Validating the Analysis
	Comparison Against Others

	Conclusions and Future Work

	The Compression of Subsegments of Images Described by Finite Automata
	 Introduction
	The Subsegment Compression Problem for Deterministic Automata
	Tight Bounds for the Compression Size of Subimages
	The Subsegment Compression Problem for Weighted Automata
	Two Applications of the Subsegment Compression

	Matching of Spots in 2D Electrophoresis Images. Point Matching Under Non-uniform Distortions
	Introduction
	Point Matching Under Non-uniform Distortion
	Definition of the Problem
	A Simple DP Algorithm for 1-D Case
	NP-Hardness Result for 2-D Case

	A Practical Algorithm for 2-D Gel Image Data
	Finding an Initial Matching
	Finding the Final Matching
	Examples

	Applying an Edit Distance to the Matching of Tree Ring Sequences in Dendrochronology*
	Introduction
	Dendrochronology
	Crossdating
	Missing and Double Rings

	Edit Distances in an $alpha $-Box
	A Simple Edit Distance
	Van Deusen's Edit Distance
	 $alpha $-Box Edit Distance

	Crossdating Employing k-Edit Distances
	Simple Crossdating by Sample Sliding
	Heuristic Postprocessing of the Results
	Crossdating Algorithm

	Test Results
	Implementation
	Randomly Generated Disturbances
	Real Missing Rings
	Runtime Tests

	Implementation and Conclusions

	Fast Multi-dimensional Approximate Pattern Matching*
	Introduction
	Previous Work
	Multidimensional Approximate Searching
	Edit Distance in More Dimensions
	A Dynamic Programming Search Algorithm
	Correctness
	Reducing the Space Requirements

	Multidimensional Exact String Matching
	A Fast Filter for Multidimensional Approximate Search
	A Stricter Filter
	Adapting the Filter to Substitutions

	Conclusions

	Finding Common RNA Secondary Structures from RNA Sequences*
	Introduction
	Notations
	Algorithm
	Definitions
	Properties
	Algorithm

	Experiment Results
	Conclusion and Future Work
	Acknowledgements

	Finding Common Subsequences with Arcs and Pseudoknots
	Introduction
	Problem Definition
	Hardness Results
	Sequences with Bounded Cutwidth
	Necessary Data Structures
	Bounded Cutwidth Algorithm
	Time Complexity Analysis:

	Conclusion

	Computing Similarity between RNA Structures*
	Introduction
	Comparing Two RNA Structures
	RNA Structures and Basic Operations
	Mapping between RNA Structures

	NP-Hard Result
	Algorithms
	Properties
	Algorithm

	Approximation Algorithms

	Author Index

